• Sonochemical and Sonophysical Effects in a Downward-Irradiation Sonoreactor
  • Seulgi Kim1,2·Younggyu Son1,2,*

  • 1 Department of Environmental Engineering, Kumoh National Institute of Technology
    2 Department of Energy Engineering Convergence, Kumoh National Institute of Technology

  • 하향 초음파 조사 시스템에서의 초음파 화학적 및 물리적 효과 평가 
  • 김슬기1,2 ·손영규1,2, *

  • 1 금오공과대학교 환경공학과
    2 금오공과대학교 에너지공학융합전공

References
  • 1. Asakura, Y., Fukutomi, S., Yasuda, K., and Koda, S., 2010, on of Sonochemical Reactors by Measuring Impedance of Transducer and Sound Pressure in Solution, J. Chem. Eng. Jpn., 43(12), 1008-1013.
  •  
  • 2. Asakura, Y., Nishida, T., Matsuoka, T., and Koda, S., 2008, Effects of ultrasonic frequency and liquid height on sonochemical effi-ciency of large-scale sonochemical reactors, Ultrason. Sonochem., 15(3), 244-250.
  •  
  • 3. Bussemaker, M.J. and Zhang, D., 2014, A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 1. Overhead stirring, Ultrason. Sonochem., 21(1), 436-445.
  •  
  • 4. Choi, J., Khim, J., Neppolian, B., and Son, Y., 2019, Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor, Ultrason. Sonochem., 51, 412-418.
  •  
  • 5. Fukunaga, S., Higashi, S., Horie, T., Sugiyama, H., Kanda, A., Hsu, T.-Y., Tung, K.-L., Taniya, K., Nishiyama, S., and Ohmura, N., 2019, Effect of geometrical configuration of reactor on a ZrP nano-dispersion process using ultrasonic irradiation, Ultrason. Sono-chem., 52, 157-163.
  •  
  • 6. Ge, H., Li, Y., and Chen, H., 2019, Ultrasonic cavitation noise in suspensions with ethyl cellulose nanoparticles, J. Appl. Phys., 125(22), 225301.
  •  
  • 7. Hatanaka, S.-i., Mitome, H., Yasui, K., and Hayashi, S., 2006, Multibubble sonoluminescence enhancement by fluid flow, Ultrason-ics, 44, e435-e438.
  •  
  • 8. Khuyen Viet Bao, T., Yoshiyuki, A., and Shinobu, K., 2013, Influence of Liquid Height on Mechanical and Chemical Effects in 20 kHz Sonication, Jpn. J. Appl. Phys., 52(7S), 07HE07.
  •  
  • 9. Kirpalani, D.M. and McQuinn, K.J. 2006, Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors, Ultrason. Sonochem., 13(1), 1-5.
  •  
  • 10. Koda, S., Kimura, T., Kondo, T., and Mitome, H., 2003, A standard method to calibrate sonochemical efficiency of an individual reac-tion system, Ultrason. Sonochem., 10(3), 149-156.
  •  
  • 11. Kojima, Y., Asakura, Y., Sugiyama, G., and Koda, S., 2010, The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor, Ultrason. Sonochem., 17(6), 978-984.
  •  
  • 12. Lee, D. and Son, Y., 2019, Sonochemial and Sonophysical Effects in Heterogeneous Systems, J. Korean Soc. Water Environ., 35(2), 115-122.
  •  
  • 13. Lim, M., Ashokkumar, M., and Son, Y., 2014, The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation, Ultrason. Sonochem., 21(6), 1988-1993.
  •  
  • 14. Mohod, A.V. and Gogate, P.R., 2011, Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), Ultrason. Sonochem., 18(3), 727-734.
  •  
  • 15. Park, B. and Son, Y., 2017, Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils, Ultrason. Sonochem., 35, 640-645.
  •  
  • 16. Pétrier, C., Combet, E., and Mason, T., 2007, Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds, Ultrason. Sonochem., 14(2), 117-121.
  •  
  • 17. Son, Y., 2017, Simple design strategy for bath-type high-frequency sonoreactors, Chem. Eng. J., 328, 654-664.
  •  
  • 18. Son, Y., Cha, J., Lim, M., Ashokkumar, M., and Khim, J., 2011, Comparison of Ultrasonic and Conventional Mechanical Soil-Washing Processes for Diesel-Contaminated Sand, Ind. Eng. Chem. Res., 50(4), 2400-2407.
  •  
  • 19. Son, Y., Lee, D., Lee, W., Park, J., Lee, W.H., and Ashokkumar, M., 2019, Cavitational activity in heterogeneous systems containing fine particles, Ultrason. Sonochem., 58, 104599.
  •  
  • 20. Son, Y., Lim, M., Ashokkumar, M., and Khim, J., 2011, Geometric Optimization of Sonoreactors for the Enhancement of Sono-chemical Activity, J. Phys. Chem. C, 115(10), 4096-4103.
  •  
  • 21. Sun, Y., Liu, D., Chen, J., Ye, X., and Yu, D., 2011, Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-¥â-carotene from citrus peels, Ultrason. Sonochem., 18(1), 243-249.
  •  
  • 22. Wood, R.J., Lee, J., and Bussemaker, M.J., 2017, A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions, Ultrason. Sonochem., 38, 351-370.
  •  
  • 23. Yasuda, K., Matsuura, K., Asakura, Y., and Koda, S., 2009, Effect of Agitation Condition on Performance of Sonochemical Reaction, Jpn. J. Appl. Phys., 48(7), 07GH04.
  •  

This Article

  • 2020; 25(3): 23-31

    Published on Sep 30, 2020

  • 10.7857/JSGE.2020.25.3.023
  • Received on Aug 28, 2020
  • Revised on Sep 4, 2020
  • Accepted on Sep 14, 2020

Correspondence to

  • Younggyu Son
  • 1 Department of Environmental Engineering, Kumoh National Institute of Technology
    2

  • E-mail: yson@kumoh.ac.kr