• Decision-making Framework for Risk-based Site Management and Use of Risk Mitigation Measures
  • Hyeonyong Chung1 ·Sang Hyun Kim2 ·Hosub Lee1 ·Kyoungphile Nam1,*

  • 1 Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea
    2 Korea Institute of Science and Technology

  • 위해성기반 오염부지관리를 위한 의사결정체계 및 이를 위한 위해저감기술의 활용
  • 정현용1 ·김상현2 ·이호섭1 ·남경필1, *

  • 1 서울대학교 건설환경공학부
    2 한국과학기술연구원

References
  • 1. 국립환경과학원, 2015, 토양오염부지 위해성평가 시범사업 및 선진화 방안 연구(‘15), NIER-SP2015-398.
  •  
  • 2. 국립환경과학원, 2017, 폐기물공정시험기준: ES 06151.1 상향류 투수방식의 유출시험.
  •  
  • 3. 박용하, 황상일, 정슬기, 2016, 토양정화 곤란부지의 최적 관리방안 연구, 한국환경정책·평가연구원.
  •  
  • 4. 환경부, 2009, 토양정밀조사지침, 환경부고시 제2009-181호
  •  
  • 5. 환경부, 2018, 토양오염물질 위해성평가 지침, 환경부고시 제2018-184호.
  •  
  • 6. 환경부, 2019a, 부지 및 오염 특성에 따른 위해노출농도 결정기술 개발.
  •  
  • 7. 환경부, 2019b, 포화대 희석-저감 특성을 반영한 오염물질 위해노출농도 결정기술 개발.
  •  
  • 8. 환경부, 2020, 토양환경보전법, 법률 제16613호.
  •  
  • 9. ASTM (American Society for Testing and Materials), 2013, Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions, ASTM International. West Conshohocken, PA. ASTM E2149-13a.
  •  
  • 10. ASTM (American Society for Testing and Materials), 2016, Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, ASTM International. West Conshohocken, PA, ASTM D5084-16a.
  •  
  • 11. ASTM (American Society for Testing and Materials), 2017, Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders, ASTM International, West Conshohocken, PA, ASTM D1633-17.
  •  
  • 12. ISO (International Organization for Standardization), 2007, ISO/TS 21268-3: Soil quality – Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials. Part 3: Up-flow percolation test.
  •  
  • 13. Jeong, B., An, J., and Nam, K., 2020, Time series analysis for determining ecologically acceptable Cu concentration from species sensitivity distribution with biotic ligand models in soil pore water, Environ. Eng. Res., 26(2), 200021.
  •  
  • 14. Kelley, M.E., Brauning, S., Schoof, R., and Ruby, M., 2002, Assessing Oral Bioavailability of Metals in Soil, Battelle Press, Colum-bus, OH, USA, 75-85.
  •  
  • 15. Lee, H., Yu, G., Choi, Y., Jho, E.H., and Nam, K, 2017, Long-term leaching prediction of constituents in coal bottom ash used as a structural fill material, J Soil Sediment, 17(12), 2742-2751.
  •  
  • 16. OECD (Organization for Economic Cooperation and Development), 2006, OECD guidelines for the testing of chemicals section 2: Effects on biotic systems.
  •  
  • 17. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851.
  •  
  • 18. USEPA (United States Environmental Protection Agency), 1994a, Catalogue of standard toxicity tests for ecological risk assessment. Office of Solid waste and Emergency Response. 9345.0-05I.
  •  
  • 19. USEPA (United States Environmental Protection Agency). 1994b. Method 1312: Synthetic Precipitation Leaching Procedure, part of Test Methods for Evaluating Solid Waste. Physical/Chemical Methods, SW-846.
  •  
  • 20. USEPA (United States Environmental Protection Agency), 2012, Institutional Controls: A Guide to Planning, Implementing, Main-taining, and Enforcing Institutional Controls at Contaminated Sites, OSWER 9355.0-89 EPA-540-R-09-001.
  •  
  • 21. USEPA (United States Environmental Protection Agency), 2017, Validation assessment of the in vitro arsenic bioaccessibility assay for predicting relative bioavailability of arsenic in soil and soil-like materials at Superfund Sites.
  •  
  • 22. USEPA (United States Environmental Protection Agency), 2020, Regional Screening Levels (RSLs), Available at ttps://www.epa.gov/risk/regional-screening-levels-rsls-users-guide.
  •  
  • 23. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., and Adriano, D.C., 2001, Arsenic fractionation in soils us-ing an improved sequential extraction procedure, Anal. Chim. Acta, 436(2), 309-323.
  •  

This Article

  • 2020; 25(3): 32-42

    Published on Sep 30, 2020

  • 10.7857/JSGE.2020.25.3.032
  • Received on Sep 2, 2020
  • Revised on Sep 6, 2020
  • Accepted on Sep 14, 2020

Correspondence to

  • Kyoungphile Nam
  • Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Korea

  • E-mail: kpnam@snu.ac.kr