• Deep Learning-based Prediction of PM10 Fluctuation from Gwanak-gu Urban Area, Seoul, Korea
  • Han-Soo Choi1 ·Myungjoo Kang2 ·Yong Cheol Kim3 ·Hanna Choi3, *

  • 1 Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea
    2 Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea
    3 Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea 

  • 서울 관악구 도심지역 미세먼지(PM10) 관측 값을 활용한 딥러닝 기반의 농도변동 예측
  • 최한수1 ·강명주2 ·김용철3 ·최한나3, *

  • 1 서울대학교 수학연구소
    2 서울대학교 수리과학부
    3 한국지질자원연구원

References
  • 1. Aubrey, E.S., Andrew, D.G., Sara, P.E., and Howard, W.M., 2020, Mechanisms of children's soil exposure, Current Problems in Pediatric and Adolescent Health Care, 50(1), 100742.
  •  
  • 2. Choung, S., Oh, J., Han, W.S., Chon, C.M., Kwon, Y., Kim, D.Y., and Shin, W., 2016, Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea, Science of the Total Environment, 541, 1132-1138.
  •  
  • 3. Davis, M.J., Janke, R., and Taxon, T.N., 2016, Assessing inhalation exposures associated with contamination events in water distri-bution systems, PloS one, 11(12), e0168051.
  •  
  • 4. Fu, Q., Niu, D., Zang, Z., Huang, J., and Diao, L., 2019, Multi-stations' weather prediction based on hybrid model using 1D CNN and Bi-LSTM, Chinese Control Conference, IEEE, p.3771-3775.
  •  
  • 5. Ghassoun, Y. and Löwner, M.O., 2017, Comparison of 2D & 3D parameter-based models in urban fine dust distribution modelling. Advances in 3D Geoinformation, Springer, Cham, p.231-246.
  •  
  • 6. Haidar, A. and Verma, B., 2018, Monthly rainfall forecasting using one-dimensional deep convolutional neural network, IEEE Acess, 6, 69053-69063.
  •  
  • 7. He, K., Zhang, X., Ren, S., and Sun, J., 2016, Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, p.770-778.
  •  
  • 8. Highsmith, V.R., Hardy, R.J., Costa, D.L., and Germani, M.S., 1992, Physical and chemical characterization of indoor aerosols re-sulting from the use of tap water in portable home humidifiers, Environmental Science & Technology, 26(4), 673-680.
  •  
  • 9. Hochreiter, S. and Schmidhuber, J., 1997, Long short-term memory, Neural Computation, 9(8), 1735-1780.
  •  
  • 10. Jeon, S. and Son, Y.S., 2018, Prediction of fine dust PM10 using a deep neural network model, The Korean Journal of Applied Statis-tics, 31(2), 265-285.
  •  
  • 11. Kim, H., Zhang, Q., and Heo, J., 2018, Influence of intense secondary aerosol formation and long-range transport on aerosol chemis-try and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ, Atmospheric Chemistry and Physics, 18(10), 7149-7168.
  •  
  • 12. Kim, S., Lee, J.M., Lee, J., and Seo, J., 2019, Deep-dust: Predicting concentrations of fine dust in Seoul using LSTM, arXiv preprint arXiv:1901.10106.
  •  
  • 13. Kim, Y., 2014, Convolutional neural networks for sentence classification, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, p.1746-1751.
  •  
  • 14. Korea Environment Corporation 2020, Air Korea, Statistics of air quality in 2014-2017, http://www.keco.or.kr/
  •  
  • 15. Korea Meteorological Adminstration 2020, Weather Information in 2017-2018, https://www.weather.go.kr/
  •  
  • 16. Krizhevsky, A., Sutskever, I., and Hinton, G.E., 2012, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, p.1097-1105.
  •  
  • 17. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., 1998, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86(11), 2278-2324.
  •  
  • 18. Na, Y.M., Yoo, K.Y., and Kim, I.S., 2007, The environmental pollutants removal effectiveness of street cleaning in Seoul, Seoul Studies, 8(3), 85-103.
  •  
  • 19. National Institute of Environmental Research, 2020, National Air Pollutants Emission in 2017-2018, https://www.nier.go.kr/
  •  
  • 20. Ostro, B., Roth, L., Malig, B., and Marty, M., 2009, The effects of fine particle components on respiratory hospital admissions in children, Environmental Health Perspectives, 117(3), 475-480.
  •  
  • 21. Park, S.M., Moon, K.J., Park, J.S., Kim, H.J., Ahn, J.Y., and Kim, J.S., 2012, Chemical characteristics of ambient aerosol during Asian dusts and high PM episodes at Seoul intensive monitoring site in 2009, Journal of Korean Society for Atmospheric Environ-ment, 28(3), 282-293.
  •  
  • 22. Possanzini, M., Buttini, P., and Di, P.V., 1988, Characterization of a rural area in terms of dry and wet deposition, Science of the Total Environment, 74, 111-120.
  •  
  • 23. Rückerl, R., Schneider, A., Breitner, S., Cyrys, J., and Peters, A., 2011, Health effects of particulate air pollution: a review of epide-miological evidence, Inhalation Toxicology, 23(10), 555-592.
  •  
  • 24. Sain, A.E., Zook, J., Davy, B.M., Marr, L.C., and Dietrich, A.M., 2018, Size and mineral composition of airborne particles generated by an ultrasonic humidifier, Indoor Air, 28(1), 80-88.
  •  
  • 25. Seoul Metropolitan Goverment, 2010, Characteristic study for detailed monitoring of the particulate matters (PM10) in the Seoul Metropolitan Area. 80p.
  •  
  • 26. Simonyan, K. and Zisserman, A., 2014, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  •  
  • 27. Son, S., Kim, D., Kang, Y., Jeon, H., Kim, S., Cho, K., and Yu, J., 2018, Fine-resolution mapping of fine dust concentration in urban areas and population exposure analysis via dispersion modeling, preprint.
  •  
  • 28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., and Rabinovich, A., 2015, Going deeper with convolutions, IEEE Conference on Com-puter Vision and Pattern Recognition, p.1-9.
  •  
  • 29. Wang, Z., Pan, X., Uno, I., Chen, X., Yamamoto, S., Zheng, H., Li, J., and Wang, Z., 2018, Importance of mineral dust and anthro-pogenic pollutants mixing during a long-lasting high PM event over East Asia, Environmental Pollution, 234, 368-378.
  •  
  • 30. Xayasouk, T. and Lee, H., 2018, Air pollution prediction system using deep learning, WIT Trans. Ecol. Environ, 230, 71-79.
  •  
  • 31. Zeiler, M.D. and Fergus, R., 2014, Visualizing and understanding convolutional networks, (D. Fleet, T. Pajdla, B. Schiele, T. Tuy-telaars eds.) In Proc. European conference on computer vision, p.818-833 (Springer, Cham).
  •  

This Article

  • 2020; 25(3): 74-83

    Published on Sep 30, 2020

  • 10.7857/JSGE.2020.25.3.074
  • Received on Aug 26, 2020
  • Revised on Sep 3, 2020
  • Accepted on Sep 22, 2020

Correspondence to

  • Hanna Choi
  • Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea 

  • E-mail: pythagoras84@kigam.re.kr