• Sonochemical Effects using Multi-stepped Ultrasonic Horn
  • Choi Jongbok1,2·Lee Seongeun2·Son Younggyu2,*

  • 1School of Civil, Environmental and Architectural Engineering, Korea University
    2Department of Environmental Engineering, Kumoh National Institute of Technology

  • 다단 혼 형태의 초음파 장비를 이용한 초음파 화학적 효과 연구
  • 최종복1,2·이성은2·손영규2,*

  • 1고려대학교 건축사회환경공학부
    2금오공과대학교 환경공학과

References
  • 1. Asakura, Y., Nishida, T., Matsuoka, T., and Koda, S., 2008, Effects of ultrasonic frequency and liquid height on sonochemical effi-ciency of large-scale sonochemical reactors, Ultrason. Sonochem., 15(3), 244-250.
  •  
  • 2. Asakura, Y., 2015, Chapter 5 - Experimental methods in sonochemistry, in: Grieser, F., Choi, P. K., Enomoto, N., Harada, H., Okitsu, K., and Yasui, K. (eds.), Sonochemistry and the Acoustic Bubble, Elsevier, Amsterdam, 119-150.
  •  
  • 3. Berlan, J. and Mason, T.J., 1992, Sonochemistry: from research laboratories to industrial plants, Ultrasonics, 30(4), 203-212.
  •  
  • 4. Chen, D., Weavers, L.K., and Walker, H.W., 2006, Ultrasonic control of ceramic membrane fouling: effect of particle characteristics, Water Res., 40(4), 840-850.
  •  
  • 5. Choi, J., Khim, J., Neppolian, B., and Son, Y., 2019, Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor, Ultrason. Sonochem., 51, 412-418.
  •  
  • 6. Entezari, M.H. and Kruus, P., 1996, Effect of frequency on sonochemical reactions II. Temperature and intensity effects, Ultrason. Sonochem., 3(1), 19-24.
  •  
  • 7. Ge, H., Li, Y., and Chen, H., 2019, Ultrasonic cavitation noise in suspensions with ethyl cellulose nanoparticles, J. Appl. Phys., 125(22), 225301.
  •  
  • 8. Iqdiam, B.M., Abuagela, M.O., Marshall, S.M., Yagiz, Y., Goodrich-Schneider, R., Baker, G.L., Welt, B.A., and Marshall, M.R., 2019, Combining high power ultrasound pre-treatment with malaxation oxygen control to improve quantity and quality of extra virgin olive oil, J. Food Eng., 244, 1-10.
  •  
  • 9. Kirpalani, D.M. and McQuinn, K.J., 2006, Experimental quantification of cavitation yield revisited: focus on high frequency ultra-sound reactors, Ultrason. Sonochem., 13(1), 1-5.
  •  
  • 10. Kobayashi, D., Matsumoto, H., and Kuroda, C., 2008, Effect of reactor¡¯s positions on polymerization and degradation in an ultra-sonic field, Ultrason. Sonochem., 15(3), 251-256.
  •  
  • 11. Kobayashi, D., Sano, K., Takeuchi, Y., and Terasaka, K., 2011, Effect of irradiation distance on degradation of phenol using indirect ultrasonic irradiation method, Ultrason. Sonochem., 18(5), 1205-1210.
  •  
  • 12. Koda, S., Kimura, T., Kondo, T., and Mitome, H., 2003, A standard method to calibrate sonochemical efficiency of an individual reac-tion system, Ultrason. Sonochem., 10(3), 149-156.
  •  
  • 13. Lee, J., Ashokkumar, M., Yasui, K., Tuziuti, T., Kozuka, T., Towata, A., and Iida, Y., 2011, Development and optimization of acous-tic bubble structures at high frequencies, Ultrason. Sonochem., 18(1), 92-98.
  •  
  • 14. Lim, M., Ashokkumar, M., and Son, Y., 2014, The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation, Ultrason. Sonochem., 21(6), 1988-1993.
  •  
  • 15. Liu, X., Zhuo, M., Zhang, W., Gao, M., Liu, X. H., Sun, B., and Wu, J., 2020, One-step ultrasonic synthesis of Co/Ni-catecholates for improved performance in oxygen reduction reaction, Ultrason. Sonochem., 105179.
  •  
  • 16. Mason, T.J., Collings, A., and Sumel, A., 2004, Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale, Ultrason. Sonochem., 11(3-4), 205-210.
  •  
  • 17. Merouani, S., Hamdaoui, O., Saoudi, F., and Chiha, M., 2010, Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production, J. Hazard. Mater, 178(1-3), 1007-1014.
  •  
  • 18. Mohod, A.V. and Gogate, P.R., 2011, Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), Ultrason. Sonochem., 18(3), 727-734.
  •  
  • 19. Nikitenko, S.I., Le Naour, C., and Moisy, P., 2007, Comparative study of sonochemical reactors with different geometry using ther-mal and chemical probes, Ultrason. Sonochem., 14(3), 330-336.
  •  
  • 20. Nishida, I., 2004, Precipitation of calcium carbonate by ultrasonic irradiation, Ultrason. Sonochem., 11(6), 423-428.
  •  
  • 21. No, Y. and Son, Y., 2019, Effects of probe position of 20 kHz sonicator on sonochemical oxidation activity, Jpn. J. Appl. Phys., 58(SG), SGGD02.
  •  
  • 22. Peshkovsky, S.L. and Peshkovsky, A.S., 2007, Matching a transducer to water at cavitation: Acoustic horn design principles, Ultra-son. Sonochem., 14(3), 314-322.
  •  
  • 23. Sabnis, S.S., Raikar, R., and Gogate, P.R., 2020, Evaluation of different cavitational reactors for size reduction of DADPS, Ultrason. Sonochem., 69, 105276.
  •  
  • 24. Son, Y., 2017, Simple design strategy for bath-type highfrequency sonoreactors, Chem. Eng. J., 328, 654-664.
  •  
  • 25. Son, Y., Lim, M., Khim, J., and Ashokkumar, M., 2012, Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor, Ultrason. Sonochem., 19(1), 16-21.
  •  
  • 26. Son, Y., No, Y., Kim, J., 2020, Geometric and operational optimization of 20-kHz probe-type sonoreactor for enhancing sonochemi-cal activity, Ultrason. Sonochem., 65, 105065.
  •  
  • 27. Sun, Y., Liu, D., Chen, J., Ye, X., and Yu, D., 2011, Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-¥â-carotene from citrus peels, Ultrason. Sonochem., 18(1), 243-249.
  •  
  • 28. Thangavadivel, K., Megharaj, M., Smart, R.S.C., Lesniewski, P.J., and Naidu, R., 2009, Application of high frequency ultrasound in the destruction of DDT in contaminated sand and water, J. Hazard. Mater., 168(2-3), 1380-1386.
  •  
  • 29. Thompson, L.H. and Doraiswamy, L.K., 1999, Sonochemistry: science and engineering, Ind. Eng. Chem. Res., 38(4), 1215-1249.
  •  
  • 30. Toma, M., Fukutomi, S., Asakura, Y., and Koda, S., 2011, A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents, Ultrason. Sonochem., 18(1), 197-208.
  •  
  • 31. Wang, J., Wang, Z., Vieira, C.L., Wolfson, J.M., Pingtian, G., and Huang, S., 2019, Review on the treatment of organic pollutants in water by ultrasonic technology, Ultrason. Sonochem., 55, 273-278.
  •  

This Article

  • 2020; 25(4): 58-66

    Published on Dec 31, 2020

  • 10.7857/JSGE.2020.25.4.058
  • Received on Sep 25, 2020
  • Revised on Sep 29, 2020
  • Accepted on Dec 2, 2020

Correspondence to

  • Son Younggyu
  • Department of Environmental Engineering, Kumoh National Institute of Technology

  • E-mail: yson@kumoh.ac.kr