• Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment 
  • Jae Hyun Jo·Seong-Eun Yoon·Jae-Moon Kim·Inseong Hwang*

  • Department of Civil and Environmental Engineering, Pusan National University, Pusan, Korea

  • Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가
  • 조재현·윤성은·김재문·황인성*

  • 부산대학교 사회환경시스템공학과

References
  • 1. Chen, J., Gu, B., Royer, R.A., and Burgos, W.D., 2003, The roles of natural organic matter in chemical and microbial reduction of ferric iron, The Sci. Total Env., 307(1-3), 167-178.
  •  
  • 2. Dong, H., Qiang, Z., Hu, J., and Sans, C., 2017, Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents, Chem. Eng. J, 316, 288-295.
  •  
  • 3. Fang, G., Chen, X., Wu, W., Liu, C., Dionysiou, D.D., Fan, T., Yujun W., Changyin Z., and Zhou, D., 2018, Mechanisms of Interac-tion between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification, Environ. Sci. Tecnol., 52(24), 14352-14361.
  •  
  • 4. Han, D., Wan, J., Ma, Y., Wang, Y., Li, Y., Li, D., and Guan, Z., 2015, New insights into the role of organic chelating agents in Fe (II) activated persulfate processes., Chem. Eng. J., 269, 425-433.
  •  
  • 5. House, D.A., 1962, Kinetics and mechanism of oxidations by peroxydisulfate, Chemical reviews, 62(3), 185-203.
  •  
  • 6. Himes, Frank L., and Stanley A. Barber., 1957, Chelating ability of soil organic matter, Soil Sci Soc Am J, 21(4), 368-373.
  •  
  • 7. Ingersoll, C.G., Brunson, E.L., Dwyer, F.J., Ankley, G.T., Benoit, D.A., Norberg‐King, T.J., Allen, G.A., Hoke, R.A., Landrum, P.F., and Winger, P.V., 1995, Toxicity and bioaccumulation of sediment‐associated contaminants using freshwater invertebrates: A review of methods and application, Environ. Toxi. Chem., 14(11), 1885-1894.
  •  
  • 8. Kim, B.G., Jung, K.W., and Kim, H.J., 2009, A Study on the characteristics of sediment in suyeong River in: Division IWA., Busan Institute of Health and Environment, Annual Report, 154-167.
  •  
  • 9. Kim, C., Ahn, J.Y., Kim, T.Y., Shin, W.S., and Hwang, I., 2018, Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI, Environ. Sci. Technol., 52(6), 3625-3633.
  •  
  • 10. Kim, G.-H. and Kim, K.-H., 2000, Acid/Base Buffer Capacity of Clays, Journal of the Korean Geotechnical Society, 16(6), 97-103.
  •  
  • 11. Kaiser, K. and Guggenberge, G., 2003, Mineral surfaces and soil organic matter, Europen J. Soil. Sci., 54(2), 219-236.
  •  
  • 12. Karlsson, T., Persson, P., and Skyllberg, U., 2006., Complexation of Copper(II) in Organic Soils and in Dissolved Organic Matter – EXAFS evidence for chelate ring structures, Environ. Sci. Technol, 40(8), 2623-2628.
  •  
  • 13. Korea institute of construction technology, 2003. Distribution survey of sediments and development technology for Enviromental dredging & reuse of dredged material in reservoir and stream.
  •  
  • 14. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55(9), 1225-1233.
  •  
  • 15. Liang, C., Huang, C.F., and Chen, Y.J., 2008, Potential for activated persulfate degradation of BTEX contamination., Water Res., 42(15), 4091-4100.
  •  
  • 16. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004, Persulfate oxidantion for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55, 1213-1223.
  •  
  • 17. Liu, H., Bruton, T.A., Li, W., Buren, J.V., Prasse, C., Doyle, F. M., and Sedlak, D.L., (2016), Oxidation of benzene by persulfate in the presence of Fe (III)-and Mn (IV)-containing oxides: stoichiometric efficiency and transformation products, Environ. Sci. Technol. 50(2), 890-898.
  •  
  • 18. Li, X., Wu, B., Zhang, Q., Xu, D., Liu, Y., Ma, F., Gu, Q., and Li, F, 2019., Mechanisms on the impacts of humic acids on persul-fate/Fe2+-based groundwater remdiation, Chem. Eng. J, 378, 122142.
  •  
  • 19. Liu, Z., Guo, W., Han, X., Li, X., Zhang, K., and Qiao, Z., 2016, In situ remediation of ortho-nitrochlorobenzene in soil by dual oxi-dants (hydrogen peroxide/persulfate), Springer, 23(19), 19707- 19712.
  •  
  • 20. Ministry of Environment, 2006, Final report on the development of comprehensive water environment evaluation research (III).
  •  
  • 21. Piasecki, W., Szymanek, K., and Charmas, R., 2019, Fe2+ adsorption on iron oxide: the importance of the redox potential of the ad-sorption system., Springer, 25(3), 613-619.
  •  
  • 22. Rastogi, A., Al-Abed, S. R., and Dionysiou, D.D., 2009, Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols, Water Res., 43(3), 684-694.
  •  
  • 23. Siegrist, R.L., Crimi, M., and Simpkin, T.J. (Eds)., 2011, In Situ Chemical Oxidation for Groundwater Remediation. Chapter 4: fun-damentals Of ISCO using persulfate, Vol. 3, Springer.
  •  
  • 24. Tan, C., Gao, N., Chu, W., Li, C., and Templeton, M.R., 2012, Degradation of diuron by persulfate activated with ferrous ion, Sep. Purif. Technol, 95, 44-48.
  •  
  • 25. Wang, Z., Qiu, W., Pang, S., and Jiang, J., 2019, Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes., Water Res., 164, 114957.
  •  
  • 26. Zhou, L., Zheng, W., Ji, Y., Zhang, J., Zeng, C., Zhang, Y., Wang, X., and Yang, X., 2013, Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system, J. Hazard. Mater., 263, 422-430.
  •  

This Article

  • 2020; 25(4): 77-86

    Published on Dec 31, 2020

  • 10.7857/JSGE.2020.25.4.077
  • Received on Nov 2, 2020
  • Revised on Feb 2, 2020
  • Accepted on Dec 14, 2020

Correspondence to

  • Inseong Hwang
  • Department of Civil and Environmental Engineering, Pusan National University, Pusan, Korea

  • E-mail: ihwang@pusan.ac.kr