• Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent
  • Jiyeon Choi·Na Kyeong Yoon·Won Sik Shin*

  • School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • 과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향
  • 최지연·윤나경·신원식*

  • 경북대학교 건설환경에너지공학부

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Amasha, M., Baalbaki, A., and Ghauch, A., 2018, A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen, Chem. Eng. J., 350, 395-410.
  •  
  • 2. Anipsitakis, G.P. and Dionysiou, D.D., 2004, Radical generation by the interaction of trasition metals with common oxidants, Environ. Sci. Technol., 38(13), 3705-3712.
  •  
  • 3. Bartelt-Hunt, S.L., Barlaz, M.A., Knappe, D.R., and Kjeldsen, P., 2006, Fate of chemical warfare agents and toxic industrial chemicals in landfills, Environ. Sci. Technol., 40(13), 4219-4225.
  •  
  • 4. Bigley, A.N., Xu, C., Henderson, T.J., Harvey, S.P., and Raushel, F.M., 2013, Enzymatic neutralization of the chemical warfare agent VX: Envolution of phosphotriesterase for phosphorithiolate hydrolysis, J. Am. Chem. Soc., 135(28), 10426-10432.
  •  
  • 5. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution, J. Phys. Chem., 17, 513-531.
  •  
  • 6. Candel, I., Marcos, M.D., Martínez-MáÁñez, R., Sancenón, F., Costero, A.M., Parra, M., Gil, S., Guillem, C., Pérez-Plá, F., and Amorós, P., 2015, Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles, Microporous Mesoporous Mater., 217, 30-38.
  •  
  • 7. Chauhan, S., Chauhan, S., D¡¯Cruz, R., Faruqi, S., Singh, K.K., Varma, S., Singh, M., and Karthik, V., 2008, Chemical warfare agents, Environ. Toxicol. Pharmcol., 26(2), 113-122.
  •  
  • 8. Chen, F., Li, Y., Guo, L., and Zhang, J., 2009, Strategies comparison of eliminating the passivation of non-aromatic intermediates in degradation of Orange II by Fe3+/H2O2, J. Hazard. Mater., 169(1-3), 711-718.
  •  
  • 9. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., and Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite), Chem. Eng. J., 313, 498-507.
  •  
  • 10. Chen, P.K., Polatnick, M., and Leather, G., 1991, Comparative study on artemisinin, 2,4-D, and glyphosate, J. Agrlc. Food Chem., 39(5), 991-994.
  •  
  • 11. De Luca, A., Dantas, R.F., and Esplugas, S., 2014, Assessment of iron chelates efficiency for photo-Fenton at neutral pH, Water Res., 61, 232-242.
  •  
  • 12. Dong, H., He, Q., Zeng, G., Tang, L., Zhang, L., Xie, Y., Zeng, Y., and Zhao, F., 2017, Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA, Chem. Eng. J., 316, 410-418.
  •  
  • 13. Dulova, N., Kattel, E., and Trapido, M., 2017, Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition, Chem. Eng. J., 318, 254-263.
  •  
  • 14. Fan, J., Gu, L., Wu, D., and Liu, Z., 2018, Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species, Chem. Eng. J., 333, 657-664.
  •  
  • 15. Giannakoudakis, D.A., Farahmand, N., ¨©omot, D., Sobczak, K., Bandosz, T.J., and Colmenares, J.C., 2020, Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J., 395, 125099.
  •  
  • 16. Gu, X.G., Lu, S.G., Li, L., Qiu, Z.F., Sui, Q., and Lin, K.F., 2011, Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate, Ind. Eng. Chem. Res., 50(19), 11029-11036.
  •  
  • 17. Gutch, P.K., Mazumder, A., and Raviraju, G., 2016, Oxidative decontamination of chemical warfare agent VX and its simulant using N,N-dichlorovaleramide, RCS Adv., 6, 2295-2301.
  •  
  • 18. Han, D., Wan, J., Ma, Y., Wang, Y., Huang, M., Chen, Y., Li, D., Guan, Z., and Li, Y., 2014, Enhanced decolorization of orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine, Chem. Eng. J., 256, 316-323.
  •  
  • 19. Hart, J., 2009, Backgroud to selected environmental and human health effects of chemical warfare agents, T.A. Kassim, D. Barceló(ed.), Environmental Consequences of War and Aftermanth. The handbook of Environmental Chemistry, vol. 3U. Springer, pp. 1-19.
  •  
  • 20. Huang, K.C., Zhao, Z.Q., Hoag, G.E., Dahmania, A., and Block, P.A., 2005, Degradation of volatile organic compounds with thermally activated persulfate oxidation, Chemosphere, 61(4), 551-560.
  •  
  • 21. IARC (International Agency for Research on Cancer), 2015. World Health Organization, Press Release No 236. IARC Monographs evaluate DDT, lindane, and 2,4-D, www.iarc.fr/en/media-centre/pr/2015/pdfs/pr236_E.pdf.
  •  
  • 22. Ji, Y., Ferronato, C., Salvador, A., Yang, X., and Chovelon, J.-M., 2014, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 472, 800-808.
  •  
  • 23. Jung, W.Y., 2004, A study on the verification and disposal of chemical weapons declaration by North Korea, Defense policy research report 04-09, Korea Research Institute for Strategy, pp.2-108.
  •  
  • 24. Killian, P.F., Bruell, C.J., Liang, C., and Marley, M.C., 2007, Iron(II) activated persulfate oxidation of MGP contaminated soil, Soil Sediment Contam., 16(6), 523-537.
  •  
  • 25. Kim, K., 2007, Weapons of Mass Destruction, Ministry of Defense, Seoul, Korea.
  •  
  • 26. Kim, H.-S., Do, S.-H., Park, K.-M., Jo, Y.-H., and Kong, S.-H., 2012, Degradation of TCE by persulfate oxidation with various activation methods (heat, Fe2+, and UV) for ex-situ chemical oxidation processes, J. Soil Groundwater Env., 17(6), 43-51.
  •  
  • 27. KRICT (Korea Research Institute of Chemical Technology), 2002, Research Planning Report on Confrontation to Chemical and Biological Terror, M102EA000001-02E010000100, Ministry of Science and ICT, Sejong, Korea.
  •  
  • 28. Kwon, J., Jung, H., Jung, H., and Lee, J., 2020, Micro/nanostructured coating for cotton textiles that repel oil, water, and chemical warfare agents, Polymers, 12(8), 1826.
  •  
  • 29. Lee, D.T., Zhao, J., Oldham, C.J., Peterson, G.W., and Parsons, G.N., 2017, UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants, ACS Appl. Mater. Interfaces, 9(51), 44847-44855.
  •  
  • 30. Li, K., Stefan, M.I., and Crittenden, J.C., 2004, UV photolysis of trichloroethylene: product study and kinetic modeling, Environ. Sci. Technol., 38(24), 6685-6693.
  •  
  • 31. Liang, C., Huang, C.F., and Chen, Y.J., 2008, Potential for activated persulfate degradation of BTEX contamination, Water Res., 42(15), 4091-4100.
  •  
  • 32. Liang, C. and Su, H.W., 2009, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48(11), 5558-5562.
  •  
  • 33. Liu, G., Li, X., Han, B., Chen, L., Zhu, L., and Campos, L.C., 2017, Efficient degradation of sulfamethoxazole by the Fe(II)/HSO5− process enhanced by hydroxylamine: Efficiency and mechanism, J. Hazard. Mater., 322(Part B), 461-468.
  •  
  • 34. Long, J.W., Chervin, C.N., Balow, R.B., Jeon, S., Miller, J.B., Helms, M.E., Owrutsky, J.C. Rolison, D.R., and Fears, K.P., 2020, Zirconia-based aerogels for sorption and degradation of dimethyl methylphosphonate, Ind. Eng. Chem. Res., 59(44), 19584-19592.
  •  
  • 35. Meselson, M., 2017, From Charles and Francis Darwin to Richard Nixon: The origin and termination of anti-plant chemical warfare in Vietnam, B. Friedrich, D. Hoffmann, J. Renn, F. Schmaltz, M. Wolf(ed.), One Hundred Years of chemical Warfare: Research, Deployment, Consequences, Springer Nature, pp. 335-348.
  •  
  • 36. Miao, Z., Gu, X., Lu, S., Brusseau, M.L., Zhang, X., Fu, X., Danish, M., Qiu, Z., and Sui, Q., 2015, Enhancement effects of chelating agents on the degradation of tetrachloroethene in Fe(III) catalyzed percarbonate system, Chem. Eng. J., 281, 286-294.
  •  
  • 37. MOE (Ministry of Environment), 2019, Framework Act on Water Management, Sejong, Korea.
  •  
  • 38. Monteagudo, J.M., Duran, A., Martin, I.S., and Carnicer, A., 2011, Role of different intermediate active species in the mineralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process, Appl. Catal. B Environ., 106(1-2), 242-249.
  •  
  • 39. Moon, S.-Y., Wagner, G.W., Mondloch, J.E., Peterson, G.W., DeCoste, J.B. Hupp, J.T., and Farha, O.K., 2015, Effective, facile, and selective hydrolysis of the chemical warfare agent VX using Zr6-based metal-organic frameworks, Inorg. Chem., 54(22), 10829-10833.
  •  
  • 40. Nawata, J., Zóźwik, P., and Popiel, S., 2019, Thermal and catalytic methods used for destruction of chemical warfare agents, Int. J. Environ. Sci. Techol., 16, 3899-3912.
  •  
  • 41. Neta, P. and Huie, R.E., 1998, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17, 1027-1284.
  •  
  • 42. Oh, S.-Y., Kim, H.-W., Park, J.-M., Park, H.-S., and Yoon, C., 2009, Oxidation of polyvinyl by persulfate activated with heat, Fe2+ and zero-valent iron, J. Hazard. Mater., 168(1), 346-351.
  •  
  • 43. Osovsky, R., Kaplan, D., Nir, I., Rotter, H., Elisha, S., and Columbus, I., 2014, Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions, Environ. Sci. Technol., 48(18), 10912-10918.
  •  
  • 44. Smolkin, B., Levi, N., Karton-Lifshin, N., Yehezkel, L., Zafrani, Y., and Columbus, I., 2018, Oxidative detoxificiation of sulfur-containing chemical warfare agents by electrophilic iodine, J. Org. Chem., 83(22), 13949-13955.
  •  
  • 45. Ploskonka, A.M. and DeCoste, J.B., 2019, Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks, J. Hazard. Mater., 375, 191-197.
  •  
  • 46. Škarohlíd, R., McGachy, L., Martinec, M., and Rošková, Z., 2020, Removal of PCE/TCE from groundwater by peroxydisulfate activated with citric acid chelated ferrous iron at 13¡ÆC, Environ. Technol. Innov., 19, 101004.
  •  
  • 47. Sohn, H., Létant, S., Sailor, M.J., and Trogler, W.C., 2000, Detection fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer, J. Am. Chem. Soc., 122(22), 5399-5400.
  •  
  • 48. Wang, S., Pomerantz, N.L., Dai, Z., Xie, W., Anderson, E.E., Miller, T., Khan, S.A., and Parsons, G.N., 2020, Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix, Mater. Today Adv., 8, 100085.
  •  
  • 49. Venny, Gan, S., and Ng, H.K., 2012, Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon(PAH)-contaminated soils. Chem. Eng. J., 180, 1-8.
  •  
  • 50. Wagner, G.W. and Yang, Y.C., 2002, Rapid nucleophilic/oxidative decontamination of chemical warfare agents, Ind. Eng. Chem. Res., 41(8), 1925-1928.
  •  
  • 51. Wang, Z., Qiu, W., Pang, S., and Jiang, J., 2019, Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes, Water Res., 164, 114957.
  •  
  • 52. Watts, R.J. and Teel, A.L., 2006, Treatment of contaminated soils and groudnwater using ISCO, Pract. Period. Hazard. Toxic Radioact. Waste Manag., 10(1), 2-9.
  •  
  • 53. Wu, X., Gu, X., Lu, S., Qiu, Z., Sui, Q., Zang, X., Miao, Z., Xu, M., and Danish, M., 2016, Accelerated degradation of tetrachloroethylene by Fe(II) activated persulfate process with hydroxylamine for enhancing Fe(II) regeneration, J. Chem. Technol. Biotechnol., 91(5), 1280-1289.
  •  
  • 54. Yang, S.Y., Wang, P., Yang, X., Shan, L., Zhang, W.Y., Shao, X.T., and Niu, R., 2010, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 179(1-3), 552-558.
  •  
  • 55. Zhao, L., Ji, Y., Kong, D., Lu, J., Zhou, Q., and Yin, X., 2016, Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process, Chem. Eng. J., 303, 458-466.
  •  
  • 56. Zou, J., Ma, J., Chen, L., Li, X., Guan, Y., Xie, P., and Pan, C., 2013, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47(20), 11685-11691.
  •  

This Article

  • 2021; 26(1): 54-64

    Published on Feb 28, 2021

  • 10.7857/JSGE.2021.26.1.054
  • Received on Feb 2, 2021
  • Revised on Feb 3, 2021
  • Accepted on Feb 9, 2021

Correspondence to

  • Won Sik Shin
  • School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Korea

  • E-mail: wshin@knu.ac.kr