• Removal of Nitrate in Groundwater Using Passive Treatment Systems: Evaluation of Removal Efficiency Through a Long-Term Column Experiment
  • Hye Na Ko1·Jiyoung Kang2·Sung-Wook Jeen2,3*

  • 1School of Earth and Environmental Sciences, Seoul National University
    2Department of Environment and Energy, Jeonbuk National University
    3Department of Earth and Environmental Sciences, Jeonbuk National University

  • 수동적 처리 시스템을 이용한 지하수 내 질산염 제거: 장기 칼럼 실험을 통한 제거 효율 평가
  • 고혜나1·강지영2·진성욱2,3*

  • 1서울대학교 지구환경과학부
    2전북대학교 환경에너지융합학과
    3전북대학교 지구환경과학과

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Alley, W.M., Reilly, T.E., and Franke, O.L., 1999, Sustainability of Ground-Water Resources, USGS, Denver, CO.
  •  
  • 2. Amos, R.T. and Mayer, K.U., 2006, Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling, J. Contam. Hydrol., 87(1-2), 123-154.
  •  
  • 3. Aslan, S. and Cakici, H., 2007, Biological denitrification of drinking water in a slow sand filter, J. Hazard. Mater., 148(1-2), 253-258.
  •  
  • 4. Azubuike, C.C., Chikere, C.B., and Okpokwasili, G.C., 2016, Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects, World J. Microbiol. Biotechnol., 32(11), 1-18.
  •  
  • 5. Baird, R.B., Eaton, A.D., and Rice, E.W., 2017, Standard Methods for the Examination of Water and Wastewater, 23rd edition, American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), U.S.
  •  
  • 6. Betlach, M.R. and Tiedje, J.M., 1981, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol., 42(6), 1074-1084.
  •  
  • 7. Burbery, L., Sarris, T., Mellis, R., Abraham, P., Sutton, R., Finnemore, M., and Close, M., 2020, Woodchip denitrification wall technology trialled in a shallow alluvial gravel aquifer, Ecol. Eng., 157, 105996.
  •  
  • 8. Chapman, D. and Kimstach, V., 1996, Selection of water quality variables, In: D. Chapman (ed.), Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring - Second Edition, E& FN Spon, London, p.59-126.
  •  
  • 9. Chen, J.J., Erler, D.V., Wells, N.S., Huang, J., Welsh, D., and Eyre, B.D., 2020, Denitrification, anammox, and dissimilatory nitrate reduction to ammonium across a mosaic of estuarine benthic habitats, Limnol. Oceanogr., 1-17.
  •  
  • 10. Dahab, M.H., 1987, Treatment alternatives for nitrate contaminated groundwater supplies, J. Environ. Syst., 17(1), 65-75.
  •  
  • 11. De Pourcq, K., Ayora, C., Garcia-Gutierrez, M., Missana, T., and Carrera, J., 2015, A clay permeable reactive barrier to remove Cs-137 from groundwater: column experiments, J. Environ. Radioact., 149, 36-42.
  •  
  • 12. Della Rocca, C., Belgiorno, V., and Meric, S., 2006, An Heterotrophic/autotrophic denitrification approach for nitrate removal from drinking water, Process Biochem., 41(5), 1022-1028.
  •  
  • 13. Devlin, J.F., 2020, Groundwater Velocity, The Groundwater Project, Guelph, Ontario.
  •  
  • 14. Freeze, R.A., and Cherry, J.A., 1979, Groundwater, Prentice-Hall, Upper Saddle River, NJ.
  •  
  • 15. Gibert, O., Assal, A., Devlin, H., Elliot, T., and Kalin, R.M., 2019, Performance of a field-scale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater, Sci. Total Environ., 659, 211-220.
  •  
  • 16. Gibert, O., Pomierny, S., Rowe, I., and Kalin, R.M., 2008, Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB), Bioresour. Technol., 99(16), 7587-7596.
  •  
  • 17. Hanrahan, G., 2012, Key Concepts in Environmental Chemistry, Academic Press, Cambridge, MA.
  •  
  • 18. ITRC, Interstate Technology & Regulatory Council, 2011. Permeable Reactive Barrier: Technology Update, PRB: Technology Update Team, Washington, D.C.
  •  
  • 19. Jeen, S.-W., Amos, R.T., and Blowes, D.W., 2012, Modeling gas formation and mineral precipitation in a granular iron column, Environ. Sci. Technol., 46(12), 6742-6749.
  •  
  • 20. Jeen, S.-W., 2017, Design of passive treatment systems for mine drainage waters, J. Soil Groundwater Environ., 22(2), 1-9.
  •  
  • 21. Kurt, N., Dunn, I.J., and Bourne, J.R., 1987, Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor, Biotechnol. Bioeng., 29(4), 493-501.
  •  
  • 22. Lindemann, S., Zarnoch, C.B., Castignetti, D., and Hoellein, T.J., 2016, Effect of eastern oysters (Crassostrea virginica) and seasonality on nitrite reductase gene abundance (nirS, nirK, nrfA) in an urban estuary, Estuaries Coasts, 39(1), 218-232.
  •  
  • 23. Majumdar, D. and Gupta, N., 2000, Nitrate pollution of groundwater and associated human health disorders, Indian J. Environ. Health, 42(1), 28-39.
  •  
  • 24. Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable ground water remediation, Chemosphere, 111(Supplement C), 243-259.
  •  
  • 25. Robertson, W.D. and Cherry, J.A., 1995. In situ denitrification of septic-system nitrate using reactive porous media barriers: filed trials, Ground Water, 33(1), 99-111.
  •  
  • 26. Robertson, W.D., Vogan, J.L., and Lombardo, P.S., 2008, Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate, Ground Water Monit. Remed., 28(3), 65-72.
  •  
  • 27. Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., and Cameron, S.C., 2010, Denitrifying bioreactors-An approach for reducing nitrate loads to receiving waters, Ecol. Eng., 36(11), 1532-1543.
  •  
  • 28. Soares, M.I.M. and Abeliobich, A., 1998, Wheat straw as substrate for water denitrification, Water Res., 32(12), 3790-3794.
  •  
  • 29. Spalding, R.F. and Exner, M.E., 1993, Occurrence of nitrate in groundwater-A review, J. Environ. Qual., 22(3), 392-402.
  •  
  • 30. Thompson, T.S., 2001, Nitrate concentrations in private rural drinking water supplies in saskatchewan, Canada, Bull. Environ. Contam. Toxicol., 66(1), 64-70.
  •  
  • 31. Vogan, J.L., 1993, The use of emplaced denitrifying layers to promote nitrate removal from septic effluent, University of Waterloo, Canada.
  •  
  • 32. Watanabe, I. and Furusaka, C., 1980, Microbial ecology of flooded rice soils, In: M. Alexander (ed.), Advances in Microbial Ecology, Springer US, Boston, p.125-168.
  •  
  • 33. Xue, D., Yu, H., Fang, Y., Shan, J., Xi, D., Wang, Y., Kuzyakov, Y., and Wang, Z.-L., 2020, 15N-tracer approach to assess nitrogen cycling processes: Nitrate reduction, anammox and denitrification in different pH cropland soils, Catena, 193, 104611.
  •  
  • 34. Zumft, W.G., 1997, Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. Rev., 61(4), 533-616.
  •  

This Article

  • 2021; 26(2): 17-27

    Published on Apr 30, 2021

  • 10.7857/JSGE.2021.26.2.017
  • Received on Feb 26, 2021
  • Revised on Mar 12, 2021
  • Accepted on Mar 29, 2021

Correspondence to

  • Sung-Wook Jeen
  • 2Department of Environment and Energy, Jeonbuk National University
    3Department of Earth and Environmental Sciences, Jeonbuk National University

  • E-mail: sjeen@jbnu.ac.kr