• The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater
  • Hanna Choi*·Hong-JinLee·Byoung Ohan Shim

  • Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea

  • 대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화
  • 최한나*·이홍진·심병완

  • 한국지질자원연구원

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Abu-Alnaeem, M.F., Yusoff, I., Ng, T.F., Alias, Y., and Raksmey, M., 2018, Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study, Sci. Total Environ, 615, 972-989.
  •  
  • 2. Allison, L.E., Bernstein, L., Bower, C.A., Brown, J.W., Fireman, M., Hatcher, J.T., Hayward, H.E., Pearson, G.A., Reeve, R.C., Richards, L.A., and Wilcox, L.V., 1954, Diagnosis and improvement of saline and alkali soils. (Ed. L. A. Richards.), US Government Printing Office, Washington D.C., USA.
  •  
  • 3. Bloemendal, M. and Olsthoorn, T., 2018, ATES systems in aquifers with high ambient groundwater flow velocity, Geothermics, 75, 81-92.
  •  
  • 4. Bloemendal, M., Olsthoorn, T., and van de Ven, F., 2015, Combining climatic and geo-hydrological preconditions as a method to determine world potential for aquifer thermal energy storage, Sci. Total Environ, 538, 621-633.
  •  
  • 5. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K., and Koh, Y.K., 2007, Fluorine geochemistry in bedrock groundwater of South Korea, Sci. Total Environ, 385(1-3), 272-283.
  •  
  • 6. Craig, H., 1961, Isotopic variations in meteoric waters, Science, 133(3465), 1702-1703.
  •  
  • 7. Gibbs, R.J., 1970, Mechanisms controlling world water chemistry, Science, 170(3962), 1088-1090.
  •  
  • 8. GIMS (National Groundwater Information Management and Service Center), Daejeon, Korea. 2021, Statistics in Groundwater in Korea, Available online: http://www.gims.go.kr/en/gims_start.do (Cited 3 May 2021).
  •  
  • 9. Hong, M.S., Yun, S., and Gil, Y.J., 1969, Geological Report of the Samye Sheet (1:50,000), Geological Survey of Korea, 32p.
  •  
  • 10. Hwang, S.I., Park, C.S., and Yoon, S.O., 2009, Weathering properties and provenance of loess-paleosol sequence deposited on river terrace in the bongdong area, Wanju-gun, Jeonbuk province, J. Geol. Soc., 44(4), 463-480.
  •  
  • 11. Jeong, S.N., 2009, Installation trend of new and renewable energy geothermal facilities introduced in public obligatory system, Korean J. Air-Cond. Refrig. Eng., 38(1), 13-17.
  •  
  • 12. Jeong, S.Y., 2020, An Experimental Study on the Performance of Heat Pump Unit Using Geothermal Heat for New Renewable Energy, Trans. Korean Hydrog. New Energy Soc., 31(6), 630-636.
  •  
  • 13. Jo, H.R., 1987, Alluvial plain in Korea, Gyohakyeonkusa, Seoul, Korea.
  •  
  • 14. Jo, S. and Kim, H.J., 2020, Study on the new renewable energy output of geothermal cooling and heating system for collective residential facilities, J. Korean Soc. Miner. Energy Resour. Eng., 57(6), 593-599.
  •  
  • 15. Kalaiselvam, S. and Parameshwaran, R., 2014, Thermal energy storage technologies for sustainability: systems design, assessment and applications, Elsevier, San Diego, USA.
  •  
  • 16. Kelley, W.P., 1963, Use of Saline Irrigation Water, Soil Sci., 95(6), 385-391.
  •  
  • 17. Kim, W. and Kim, Y.K., 2019, Optimal operation methods of the seasonal solar borehole thermal energy storage system for heating of a greenhouse, J. Korea Acad. Industr. Coop. Soc., 20(1), 28-34.
  •  
  • 18. KMA (Korea Meteorological Administration), Seoul, Korea. Available online: https://www.weather.go.kr/weather/climate/past_cal.jsp (Cited 3 May 2021).
  •  
  • 19. Krupińska, I., 2020, Impact of the oxidant type on the efficiency of the oxidation and removal of iron compounds from groundwater containing humic substances, Molecules, 25(15), 3380.
  •  
  • 20. Lee, K.S. and Lee, C.B., 1999, Oxygen and hydrogen isotope composition of precipitation and river waters South Korea, J. Geol. Soc. Korea, 35(1), 73-84.
  •  
  • 21. Li, Q., 2014, Optimal use of the subsurface for ATES systems in busy areas, PhD thesis, Delft University of Technology, Delft, Netherlands.
  •  
  • 22. Ministry of EnvironmentSejong, Korea. Drinking Water Management Act; Ministry of Environment: Sejong, Korea, 2021, Available online: http://law.go.kr/engLsSc.do?menuId=0&subMenu=5&query=#AJAX (Cited 3 May 2021).
  •  
  • 23. MOLIT (Ministry of Land, Infrastructure and Transport), 2017, National Groundwater Management Plan in Korea (2017~2026), Sejong, Korea.
  •  
  • 24. Mohanty, M., 2012, New renewable energy sources, green energy development and climate change: Implications to Pacific Island countries, Manag. Environ. Qual., 23(3), 264-274.
  •  
  • 25. Nazzal, Y., Ahmed, I., Al-Arifi, N.S., Ghrefat, H., Zaidi, F.K., El-Waheidi, M.M., Batayneh, A., and Zumlot, T., 2014, A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia, Environ. Monit. Assess., 186(8), 4655-4667.
  •  
  • 26. Nielsen, J.E. and S©ªrensen, P.A., 2016, Renewable district heating and cooling technologies with and without seasonal storage, Renewable Heating and Cooling, Woodhead Publishing, Cambridge, UK.
  •  
  • 27. Owusu, P.A. and Asumadu-Sarkodie, S., 2016, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent. Eng., 3(1), 1167990.
  •  
  • 28. Park, Y., Kwon, K.S., Kim, N., Lee, J.Y., and Yoon, J.G., 2013, Change of geochemical properties of groundwater by use of open loop geothermal cooling and heating system. J. Geol. Soc. Korea, 49(2), 289-296.
  •  
  • 29. Park, Y., Mok, J.K., Jang, B.J., Lee, J.Y., and Park, Y.C., 2015, Influence of closed loop ground source heat pumps on groundwater: a case study. J. Geol. Soc. Korea, 51(2), 243-251.
  •  
  • 30. Parkhurst, D.L. and Appelo, C.A.J., 1999, User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resour. Invest. Rep., 99(4259), 312p.
  •  
  • 31. Possemiers, M., Huysmans, M., and Batelaan, O., 2014, Influence of aquifer thermal energy storage on groundwater quality: A review illustrated by seven case studies from Belgium. J. Hydrol. Reg. Stud., 2, 20-34.
  •  
  • 32. Shin, J.S., Park, J.W., and Kim, S.H., 2020, Measurement and verification of integrated ground source heat pumps on a shared ground loop, Energies, 13(7), 1752.
  •  
  • 33. Todd, D.K. and Mays, L.W., 2004, Groundwater Hydrology (3rd edition), John Wiley & Sons., Massachusetts, USA.
  •  
  • 34. Todorov, O., Alanne, K., Virtanen, M., and Kosonen, R., 2020, A method and analysis of aquifer thermal energy storage (ATES) system for district heating and cooling: A case study in Finland, Sustain. Cities. Soc., 53, 101977.
  •  
  • 35. Tolera, M.B., Choi, H., Chang, S.W., and Chung, I.M., 2020, Groundwater quality evaluation for different uses in the lower Ketar Watershed, Ethiopia, Environ. Geochem. Health, 42(10), 3059-3078.
  •  

This Article

  • 2021; 26(3): 14-24

    Published on Jun 30, 2021

  • 10.7857/JSGE.2021.26.3.014
  • Received on May 12, 2021
  • Revised on May 15, 2021
  • Accepted on May 31, 2021

Correspondence to

  • Hanna Choi
  • Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea

  • E-mail: pythagoras84@kigam.re.kr