• A Study on Fractions and Leaching Potential of Heavy Metals in Abandoned Mine Wastes
  • 휴ㆍ폐광산지역에서 폐재내 중금속의 존재형태 및 용출특성에 관한 연구
  • 김휘중;양재의;이재영;전상호;
  • 강원대학교 자연과학대학 환경과학과;강원대학교 생물환경학부;서울시립대학교 환경공학과;강원대학교 자연과학대학 환경과학과;
Abstract
This study investigates the fractional composition and the leaching characteristics of heavy metals in polluted soils due to mining activities. The fractionated composition of heavy metals is classified into five fractions; adsorbed, carbonate, reducible, organic and residual fraction. The status of humic substances in mine wastes of most sites are polyhumic except tailing from Sangdong mine. According to the sequential extraction procedures (SEPs), leaching probabilities of Cd in coal wastes and tailing are relatively low due to high percentage of residual fraction. 46.4% of Ni in tailings from Sangdong mine is probably leached under oxidized environment, and 39.4% of Cu in these tailings is readily extracted under strongly oxidized environment by organic fraction. According to leaching condition of pH 3.0 and pH 5.6, the amount of heavy metals leached out of coal wastes and tailing increases to 1/2 hours. At pH 3.0 and pH 5.6, concentration of Ni in tailing increases up three times of the initial value. Heavy metals released from coal wastes and tailing were not influenced significantly by leaching time.

연구의 목적은 광산활동에 의해 발생된 폐재에 의해 오염된 토양에 포함된 중금속의 존재형태와 용출특성에 대하여 비교 분석하는데 있다. 실험에 이용된 중금속 존재형태 분류는 다섯가지로 adsorbed, carbonate, reducible, organic과 residual 형태로 나누었다. 토양내 유기물의 함량 정도는 상동광산에서 발생된 광미가 석탄폐재보다 낮은 것으로 나타났다. 오염된 토양의 중금속 용출 실험에 의하면 석탄폐석과 광미내의 카드뮴의 경우 낮은 용출량을 보였으며, 대부분이 reduciblel fraction에서 용출된 것으로 관찰되었다 상동광산에서 발생된 광미에 포함된 니켈은 혐기성 상황이 되면 총량의 약 46.4%가 용출될 것으로 사료되며, 구리의 경우 약 39.4%가 용출될 것으로 판단된다. pH 3.0과 pH 5.6의 용출조건하에서 석탄 폐석과 광미의 용출랑의 점진적인 증가는 30분안에 이루어졌으며, 광미의 경우 니켈은 pH 3.0과 pH 5.6에서 용출 3시간까지 계속 증가되는 상태를 보였다.

Keywords: sequential extraction procedures (SEPs);polluted soil;heavy metal;tailing;leaching;

Keywords: 연속침출법;토양오염;중금속;광미;용출;

References
  • 1. Forstner, U. and Salomon, W. Mobilization of metals from sediments, Metals and Their compound in environment (ed. by E, Merian), pp. 379-398 (1991)
  •  
  • 2. Park, Y.A. 'Designing and applicability of soil pollution indices for estimating quality of soil polluted with heavy metals and arsenic', J. of KOSES 1(1): 47-54 (1996)
  •  
  • 3. Kim, O. J. Geological map of Korea (1:50,000), Geological survey of Korea, (1974)
  •  
  • 4. Park, Y.A. 'Distribution and transportation of fine-grained sediments on the intercontinental shelf off the Kuem river estuaiy', Korea, J. of Geo. Soc. of Korea 20(2), 154-168 (1984)
  •  
  • 5. Shepard, F. P. 'Nomenclature Based on sand-silt-clay ratios', J. Sed. Pet. 24, 151-158 (1954)
  •  
  • 6. Hakanson, L. and Jansson, M. Principles of lake sedimentology. Springer -Verlag, Berlin, 316, (1983)
  •  
  • 7. Tessier, A., Campbell, P.G.C. and Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), 844-851 (1979)
  •  
  • 8. Salomons, E.L. Mobilization of metals from sediments, Metals and Their compound in environment (ed. by E, Marin), 357, (1994)
  •  
  • 9. Ministry of environment. Korea environmental information, (1999)
  •  
  • 10. Bowen, H.J.M. Environmental chemistry of the elements, Academic press, London, (1979)
  •  
  • 11. Istvan, P. and Jones Jr. Trace elements, CRC., Lucie Press, (1997)
  •  
  • 12. Rose, A.W., Hawkes, H.E. and Webb, J.S. Geochemistry in Mineral Exploration : Academic Press, pp. 549-581 (1979)
  •  
  • 13. Bear, F.E. Chemistry of the soil, (2nd ed); Reinhold Publishing Corp., New York, p. 246 (1964)
  •  
  • 14. Kloke, A. Content of arsenic, cadmium, chromium, fluorine, lead, mercury, nickel in plants grown on contaminated soil: UN-ECE Symp, (1979)
  •  
  • 15. Levinsion, A.A. Introduction to exploration geochemistry: Applied Publishing Ltd., May Wood, p. 614 (1974)
  •  

This Article

  • 2003; 8(3): 45-55

    Published on Sep 1, 2003