• The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability
  • 압력에 따른 균열 간극변화와 수리전도도 변화 관찰
  • 채병곤;이철우;정교철;김용제;
  • 한국지질자원연구원 지질환경재해 연구부;한국지질자원연구원 지하수ㆍ지열자원 연구부;안동대학교 지구환경과학과;한국지질자원연구원 지하수ㆍ지열자원 연구부;
Abstract
In order to measure aperture variation dependent on normal stress and to characterize on relationship between aperture variation and hydraulic conductivity this study measured apertures of rock fractures under a high resolution confocal laser scanning microscope (CLSM) with application of five stages of uniaxial normal stresses. From this method the response of aperture can be continuously characterized on one specimen by different loads of normal stress. The results of measurements showed a rough geometry of fracture bearing non-uniform aperture. They also revealed different values of aperture variations according to the load stages on each position along a fracture due to the fracture roughness. Laboratory permeability tests were also conducted to evaluate the changes of permeability coefficients related to the aperture variations by different loads. The results of permeability tests revealed that the hydraulic conductivity was not reduced at a fixed rate with increase of normal load. Moreover, the rates of aperture variations did not match to those of hydraulic conductivity. The hydraulic conductivity calculated in this study did not follow the cubic law, representing that the parallel plate model is not suitable to express the fracture geometry corresponding to the results of aperture measurements under the CLSM.

압축력의 변화에 따른 균열 간극변화 양상을 측정하고 간극변화와 수리전도도와의 관계를 파악하기 위해 이 연구에서는 다섯 단계의 수직 일축압축력을 균열면에 연속적으로 가하면서 고해상도의 공초점 레이저 스캔 현미경 (confocal laser scanning microscope; CLSM)을 이용하여 간극의 크기를 측정하고 디지털 이미지를 획득하였다. 기존의 연구들과는 달리 이 연구의 측정방법은 압력변화에 대한 동일시료 간극의 반응을 연속적으로 파악할 수 있는 점이 특징이다. 측정결과는 간극크기가 일정하지 않은 불평탄한 균열형태를 매우 잘 나타내었다. 균열 조도(roughness)로 인해 압력에 따른 간극 변화량은 일정하지 않고 부분마다 다름을 보였다. 각 압력단계에서 간극변화에 따른 투수성 변화양상을 파악하고자 실내투수시험을 병행하여 실시한 결과, 각 압력단계에서의 투수성 변화도 일정한 감소율을 나타내지 않고 간극 변화율이 크더라도 투수율은 오히려 작은 경우도 관찰되었다. 현미경을 통해 측정한 물리적 간극과 실제 유체유동 경로가 되는 수리간극의 크기 차이를 파악하기 위해 계산을 한 결과, 미미한 갈이지만 물리적 간극보다 작은 크기의 수리간극이 구해졌다. 또한, 실내투수시험 결과를 이용하여 구한 투수계수는 삼승법칙을 따르지 않는 것으로 드러났으며, 이러한 사실들은 균열 양쪽이 서로 평행하지 않고 불평탄한 양상을 가짐을 의미하는 것으로서, 현미경을 통해 직접 관찰한 간극양상과 잘 일치하는 것이다.

Keywords: confocal laser scanning microscope (CLSM);aperture variation;fracture roughness;hydraulic conductivity;hydraulic aperture;

Keywords: 공초점 레이저 스캔 현미경;간극변화;조도;수리전도도;수리간극;

References
  • 1. Snow, D. T., 'A parallel plate model of fractured permeable media', Ph.D. Thesis, University of Califomia, Berkeley, U.S.A.,P. 331 (1965)
  •  
  • 2. Raven, K. G. and Gale, J. E., 'Water How in a natural rock fracture as a function of stress and sample size', Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 22(4), PP. 251-261 (1985)
  •  
  • 3. Brown, S. B., 'Fluid flow through rockjoints: the effect of surface roughness', J. Geophys. Res., 92(B2), PP. 1337-1347 (1987)
  •  
  • 4. Gale, J. E., 'Assessing the permeability characteristics of fractured rock', GSA Special Paper 189, pp. 163-181. (1982)
  •  
  • 5. Zimmerman, R. W. and Bodvarsson, G. S., 'Hydraulic con-ductivity of rock fractures', Transport in Porous Media, 23, pp. 1-30 (1996)
  •  
  • 6. Gale, J. E. 'The eBects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relation-ships', In Proc. 23rd U.S. Rock Mech. Symp., PP. 290-298 (1982)
  •  
  • 7. Olsson, W. A. and Brown, S. R., 'Hydromechanical response of a fracture undergoing compression and shear', Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 30(7), PP. 845-881 (1993)
  •  
  • 8. Durham, W. B. and Bonner, B. R, 'Self-propping and fluid flow in slightly offset joints at high effective pressures', J. Geophys. Res., 99(B5), pp. 9391-9399 (1994)
  •  
  • 9. Hakami, E. and Larsson, E., 'Aperture measurements and flow experiments on a single natural fracture', Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 33(4), PP. 395-404 (1996)
  •  
  • 10. Neretnieks, I., 'A note on fracture flow dispersion mechanisms in the ground', Water Resources Res., 19(2), PP. 364-370 (1983)
  •  
  • 11. Rasmuson, A. and Neretnieks, I., 'Radionuclide transport in fast channels in crystalline rock', Water Resources Res., 22(8), PP. 1247-1256 (1986)
  •  
  • 12. Tsang, Y. W. and Tsang, C. R, 'Channel model of flow through fractured media', Water Resources Res., 23(3), pp. 467-479 (1987)
  •  
  • 13. Tsang, Y. W., Tsang, C. R, Neretnieks, I. and Moreno, L., 'Flow and tracer transport in fractured media: A variable aperture channel model and its properties', Water Resources Res., 24(12), pp. 2049-2060 (1988)
  •  
  • 14. Berkowitz, B. and Braester, C., 'Solute transport in fracture channel and parallel plate models', Geophys. Res. Letters ,18(2), PP. 227-230 (1991)
  •  
  • 15. Brown, S. R., Kranz, R. L. and Bonner, B. P., 'Correlation between the surfaces of natural rock joints', Geophys. Res. Letters, 13, pp. 1430-1433 (1986)
  •  
  • 16. Brown, S. R. and Scholz, C. H., 'Broad bandwidth study of the topography of natural rock surfaces', J. Geophys. Res., 90(B14),pp. 12575-12582 (1985)
  •  
  • 17. Gale, J. E., 'Compahson of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties', Proc. 28th U.S. Rock Mech. Symp., pp. 1213-1222 (1987)
  •  
  • 18. Pyrak-Nolte, L. J., Myer, L. R., Cook, N. G. W. and Witherspoon, P. A., 'Hydraulic and mechanical properties of natu-ral fractures in low permeability rock', Proc. 6th Int. Rock Mech. Symp., pp. 225-231 (1987)
  •  
  • 19. Gentier, S., Billaux, D. and Vliet, L., 'Laboratory testing of the voids of a fracture', Rock Mech. Rock Eng., 22, PP. 149-157 (1989)
  •  
  • 20. Hakami, E. and Stephansson, O., 'Experimental technique for aperture studies of intersecting joints', Proc. ISRM Int. Symp. Eurock '93, pp. 301-308 (1993)
  •  
  • 21. Hakami, E. and Barton, N., 'Aperture measurements and flow expeiiments using transparent replicas of rock joints', In Rock Joints, Barton Stephansson (Eds), Balkema, Rotter-dam, pp. 383-390 (1990)
  •  
  • 22. Hakami, E., 'Joint aperture measurements; An experimen-tal technique', In Proc. Int. Symp. Fractured and Jointed Rock Massses, Lake Tahoe, Califomia, U.S.A. (1992)
  •  
  • 23. Persoff, P. and Pruess, K., 'Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures', Water Resources Res., 31(5), PP. 1175-1186 (1995)
  •  
  • 24. 정교철, 채병곤, 김만일, 서용석, '화강암의 손상과정에 따른 투수계수 특성 연구', 지질공학, 11(3), PP. 315-325 (2001)
  •  
  • 25. 채병곤, 송재용, 정교철, '콘포컬 레이저 헌미경을 이용한 불연속면의 거칠기 측정 연구', 지질공학, 12(4), PP. 405-419 (2002)
  •  
  • 26. Domenico, P. A. and Schwartz, F. W., 'Physical and Chemical Hydrogeology', second edition, John Wiley & Sons, (1998)
  •  
  • 27. Yeo, I. W., 'Effect of contact obstacles on fluid flow in rock fractures', Geosciences Jouma', 5(2), pp. 139-143 (2001)
  •  
  • 28. Zimmerman, R. W., Chen, D. -W. and Cook, N. G. W., 'The effect of contact area on the permeability of fractures', Jour-nat of Hydrology, 139, pp. 79-96 (1992)
  •  
  • 29. Chae, B.-G., Ichikawa, Y., Jeong, G.-C., Seo, Y.-S., 'Roughness measurement of rock discontinuities using a confocal laser scanning microscope and the Fourier sepc-tral, analysis', Eneineering Geology, In press (2002)
  •  
  • 30. Ichikawa, Y, Kawamura, K., Uesugi, K., Seo, Y.-S. and Fujii, N., 'Micro- and macrobehavior of granitic rock: observation and viscoelastic homogenization analysis', Comput. Meth- ods Appl. Mech. Engrg., 191, pp. 47-72 (2001)
  •  

This Article

  • 2003; 8(4): 1-11

    Published on Dec 1, 2003