• Cometabolic Biodegradation of Fuel Additive Methyl tert-Butyl Ether(MTBE) by Propane- and Butane-Oxidizing Microorganisms
  • 프로판 및 부탄 이용 미생물에 의한 휘발유 첨가제 MTBE의 동시분해
  • 장순웅;
  • 경기대학교 토목환경공학부 환경공학전공;
Abstract
A gas-substrate degrading bacterium, Nocardia SW3, was isolated from the gasoline contaminated aquifer using propane and butane as carbon and energy sources. We have examined the effects of substrate concentration, temperature and pH on the gas substrate degradation as well as MTBE cometabolic degradation. The result for the effect of substrate concentration showed that the maximum degradation rates of propane and butane were 30.6 and 25.4 (n㏖/min/mg protein) at 70 $\mu$㏖, respectively. The optimum temperature and pH for the degradation of gas substrate were $30^{\circ}C$ and 7, respectively. Substrate degradation activity, however, was still active in broad range of pH from 5 to 8 and temperature between $15^{\circ}C$and$35^{\circ}C$. The degradation activity of Nocardia SW3 for the MTBE was similar to the both substrates. The observed maximal transformation yields ($T_y$) were 46.7 and 35.0 (n㏖ MTBE degraded $\mu$㏖ substrate utilized), and the maximal transformation capacities ($T_c$) were 320 and 280 (n㏖MTBE degraded/mg biomass used) for propane and butane oxidizing activity on MTBE, respectively. And also, TBA was detected as by-product of MTBE and it was continuously degraded further.

국내유류오염지역 토양에서 propane과 butane을 탄소원으로 이용하여 분리된 Nocardia SW3를 대상으로 가스기질농도, 온도, pH 변화에 따른 영향, 그리고 MTBE 공대사 분해 특성을 조사하였다. 초기농도변화에 따른 기질분해속도를 비교하면 propane 및 butane이 70$\mu$㏖일때 각각 30.6, 25.4(n㏖/min/mg protein)으로 관찰되어 빠른 기질이용율을 보여주었으며, 최적온도 및 pH조건은 $30^{\circ}C$, 7이었으며, 실험조건인 온도 $15^{\circ}C$$35^{\circ}C$. pH 5∼8 범위내에서 약간의 차이는 있지만 전반적으로 propane과 butane이 효율적으로 이용되었다. Nocardia SW3를 대상으로 propane 및 butane이 탄소원으로 이용될 때 MTBE분해특성을 비교ㆍ평가한 결과, propane 및 butane의 MTBE 분해 활성도는 유사하였으며, 가스기질이 탄소원으로 이용시 MTB표의 분해량을 나타내는 transformation yield($T_y$)는 propane과 butane의 경우 각각 46.7, 35.0(n㏖ MTBE degraded $\mu$㏖ substrate utilized), transformation capacity($T_c$)는 실험 결과 각각 320, 280(n㏖ MTBE degraded/mg biomass used)로 나타났다. 또한 MTBE 부산물로 TBA가 검출되었으며, TBA의 지속적인 분해를 관찰하였다.

Keywords: Nocardia SW3;MTBE;Nocardia SW3;propane;butane;MTBE;cometabolism;

Keywords: 프로판;부탄;공대사;

References
  • 1. U.S. Environmental Protection Agency, Health risk Per-spective on fuel oxygenates, U.S. Environmental Protection Agency publication no. EPA 600/R-94/217, U.S. Environmental Protection Agency, Washing, D.C. (1994)
  •  
  • 2. 배범한, 조종수, '휘발유 첨가제 MTBE에 의한 지하수오염의 문제점 및 정화방안', 대한토목학회, 46(3), pp. 41-51 (1998)
  •  
  • 3. 이지훈, 이진용, 천정용, 이강근, '유류 오염 물질 MTBE에대한 연구동향', 대한지하수환경학회지, 7(1), pp. 55-58(2000)
  •  
  • 4. Harty, W.R., Englande, Jr., A.J. and Hamngton, D.J. 'Health risk assesment of groundwater contaminated with methyl tertiary butyl ether (MTBE)', Wat. Sci. Tech., 39(10), pp. 305-310 (1999)
  •  
  • 5. USEPA, Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether, U.S. Environmental Protection Agency, Office of Water, EPA-882-F-97-009 (1997)
  •  
  • 6. Salanitro, J.R, Diaz, L.A., Williams, M.P. and isniewsji, H.L. 'Isolation of a bacterial culture that degrades methyl t-butyl ether', Appl. Environ. Microbiat, 60, pp. 2593-2596 (1994)
  •  
  • 7. Mo, K., Lora, C.O., Wanken, A.E., Javanmardian, M., Yang, X., and Kulpa, C.F. 'Biodegradation of methyl t-butyl ether by pure bacterial cultures', Appl. Micmbiol. Biotechnol, 47, pp. 69-72 (1997)
  •  
  • 8. Hardison, L.K., Curry, S.S., Ciuffetd, L.M., and Hyman, M.R. 'Metabolism of diethyl ether and cometabolism of methyl tbutyl ether by a filamentous fungus, a Graphium sp', Appl. Envimn. Microbiol., 63(8), PP. 3059-3067 (1997)
  •  
  • 9. Kharoune, M., Pauss, A. and Lebeault, J.M. 'Aerobic bio-degradation of an oxygenates mixture: ETBE, MTBE, and TAME in an upflow fixed-bed reactor', Wat. Res., 35(7), pp. 1665-1667 (2001
  •  
  • 10. Steffan, R.J., McClay, K., Valnberg, S., Condee, C.W. and Zhang, D. 'Biodegradation of the gasoline oxygenates methyl t-butyl ether, ethyl t-butyl ether, and ten-amyl methyl ether by propane-oxidizing bacteria', Appl. Envi-ron. Microbiot., 63(11), pp. 4216-4222 (1997)
  •  
  • 11. Gamier, P.M., Aurio, R., Augur, C., Revah, C. 'Cometa-bolic biodegradation of methyl t-butyl ether by Pseudomo-nas aeruginosa grown on pentane', Appl. Micmbiol. Biotechnol., 51, pp. 498-503 (1995)
  •  
  • 12. Hyman, M.R., Kwon, R, Williamson, K. and O'Reilly K 'Cometabolism of MTBE by alkane-utilizing microorganism'. In G.B. Wickramanayake aand R.E. Hinche (Eds.), Natural Attenuation: Chlorinated and Recalcitrant Compounds, PP. 321-326, Battelle Press, Columbus, OH (1998)
  •  
  • 13. Hyman, M.R., and O'Reilly, K. 'Physiological and enzy-matic features of MTBE-degrading bacteria', In B.C. Alle-man and A. Leeson (Eds.), In Situ Bioremediation of Petroleum Hydrocarbons and Other Organic Compounds, pp. 7-12, Battelle Press, Columbus, OH (1999)
  •  
  • 14. Hyman, M.R., Smith, K. and O'Reilly, K. 'Cometabolism of MTBE by an aromatic hydrocarbon-oxidizing bacterium', In V.S. Magar and M.R. Hyman (Eds.), Bioremediation of MTBE, Alchols, and Ethers, pp. 145-152, Battelle Press, Columbus, OH (2001)
  •  
  • 15. Chang, S.W., Baek, S.S. and Lee, S.J. 'Cometabolic degradation of MTBE and other gasoline additives by butane-utilizing microorganisms', In V.S. Magar and M.R. Hyman (Eds.), Bioremediation of MTBE, Alchols, and Ethers, pp. 161-166, Battelle Press (2001)
  •  
  • 16. Hamamura N., Storfa, R.T, Semprini, L. and Arp D.J. 'Diversity in butane monooxygenases among butane-grown bacteria', Appl. Environ. Microbiol., pp. 4586-4593 (1999)
  •  
  • 17. Gomall, A.G., Bardawill, C.J. and David, M.M, 'Determination of serum proteins by means of the Biuret reaction', J. Biol. Chem., 177, pp. 751-766 (1949)
  •  
  • 18. Ginkel V., Welten H.J., Hartmans S. and De Bont J.A.M. 'Metabolism of trans-2-butane and butane in Nocardia TB-l', J. Gen. Microbiol. 133, pp. 1713-1720 (1987)
  •  
  • 19. Amstrong, A.Q., Hudsen, R.E., Hwang, H.M., and Lewis, D.L. 'Environmental factors affecting toluene degradation in groundwater at a hazardous waste site', Environ. Toxicol. Chem., 10, pp. 147-159 (1991)
  •  
  • 20. Deeb, R.A. and Alvarez-Cohen, L. 'Temperature effects and substrate interactions dueing the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodo-coccus rhodochrous', Biotech & Bioeng., 62, PP. 526-536 (1999)
  •  
  • 21. 백승식, 장순응, 이시진 '부탄분해미생물에 의한 가솔린첨가제 MTBE(Methy) tert-Butyl Ether) 분해',한국지하수환경학회지, 6(3), pp. 31-41 (2001)
  •  
  • 22. Liu, C.Y, Speitel, G.E., and Georgiou, G. 'Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria', Appl. Environ. Microbiol, 67(5), pp. 2197-2201 (2001)
  •  
  • 23. 장순웅, '부탄분해미생물을 이용한 휘발유 첨가제의 분해특성'. 한국지하수토양환경학회, 8(1) pp. 27-34 (2003)
  •  

This Article

  • 2003; 8(4): 45-52

    Published on Dec 1, 2003