• Aging Effects on Sorption and Desorption of Atrazine in Soils
  • Park Jeong-Hun;
  • Dept. of Environmental Engineering, Chonnam National University;
  • Atrazine의 토양 흡착 및 탈착에 미치는 접촉시간의 영향
  • 박정훈;
  • 전남대학교 환경공학과;
Abstract
The effects of soil-chemical contact time (aging) on sorption and desorption of atrazine were studied in soil slurries because aging is an important determinant affecting on the sorption and desorption characteristics of organic contaminants in the environment. Sorption isotherm and desorption kinetic experiments were performed, and soilwater distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear $(r^2\;>\;0.97)$ and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients $(K_d)$ increased with increasing aging in all soils studied. Sorption non-linearity did not increase with increased aging except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction $(f_{eq})$ decreased and the non-desorbable site fraction $(f_{nd})$ increased as a function of aging time in all soils. In all soils studied, it was found that when normalized to soil organic matter content the concentration of atrazine in desorbable sites was comparatively constant, whereas that in non-desorbable site increased as aging increased.

토양과 유기화합물의 접촉시간은 흡착과 탈착의 특성에 영향을 미치는 중요한 요소 중의 하나이다. 본 연구에서는 atrazine의 토양 흡착과 탈착에 미치는 접촉시간의 영향을 연구하였다. 등온 흡착실험을 수행하여 토양과 수용액 사이의 분배계수를 구하였고, 탈착에 대한 동력학 실험을 수행하고 three-site desorption모델을 이용, 회기분석 하여 탈착속도 계수들을 추산하였다. atrazine과 토양의 접촉시간은 2일에서부터 8개월까지 변화시켰다. 2일 흡착에 대한 atrazine의 흡착등온 곡선은 거의 선형이었고$(r^2>0.97)$, 흡착분배계수는 토양의 유기탄소 함량과 강한 양의 상관관계를 가졌으며 사용한 모든 토양에서 접촉시간이 길어질수록 증가하였다. 흡착곡선에서의 비선형성은 Houghton muck토양을 제외하고는 접촉시간에 따라 증가하지 않았다. 탈착실험 분석으로부터 접촉시간이 증가함에 따라 equilibrium site분율은 감소하고 non-desorbable site 분율은 증가함을 알 수 있었다. 사용한 모든 토양에서 토양유기탄소 함량으로 표준화한 경우 desorbable sites 에서의 atrazine농도는 접촉시간에 따라 비교적 일정한 것에 비해 non-desorbable site에서의 atrazine농도는 접촉시간이 증가함에 따라 증가하였다.

Keywords: Atrazine;Sorption;Desorption;Model;Kinetics;Soil;Aging;

Keywords: 흡착;탈착;모델;동력학;토양;

References
  • 1. Carroll, K.M., Harkness, M.R., Bracco, A.A., and Balcarcel, R.R., 1994, Application of a penneant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson river sediments, Environ. Sci. Technol., 28, 253-258
  •  
  • 2. Chen, W, Kan, A.T., Newell, C.J., Moore, E., and Tomson, M.B., 2002, More realistic soil cleanup standards with dualequilibrium desorption, Ground Water, 40, 153-164
  •  
  • 3. Chiou, C.T., Porter, P.E., and Schmedding, D.W, 1983, Partition Equilibria of Nonionic Organic Compounds between Soil Organic Matter and Water, Environ. Sci. Technol., 227-231
  •  
  • 4. Clay, S.A., Allmaras, R.R, Koskinen, W.C., and Wyse, D.L., 1988, Desorption of Atrazine and Cyanazine from Soil, J. Environ. Qual., 17, 719-723
  •  
  • 5. Clay, S.A. and Koskinen, W.C., 1990, Characterization of alachlor and atrazine desorption from soils, Weed Sci., 38, 74-80
  •  
  • 6. Connaughton, D.F., Stedinger, J.R., Lion, L.W, and Shuler, M.L., 1993, Description of time-varying desorption kinetics: Release of naphthalene from contaminated soils, Environ. Sci. Technol., 27, 2397-2403
  •  
  • 7. Cornelissen, G., Van Noort, P.C.M., and Govers, H.A.J., 1998, Mechanism of slow desorption of organic compounds from sediments: A study using model sorbents, Environ. Sci. Technol., 32, 3124-3131
  •  
  • 8. Garcia-Valcarcel, A.I., Matienzo, T., Sanchez-Brunete, C., and Tadeo, J.L., 1998, Adsorption of triazines in soils with low organic matter content, Fresenius Environ. Bull., 7, 649-656
  •  
  • 9. Gschwend, P.M. and Wu, S.C., 1985, On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants, Environ. Toxicol. Chem., 19, 90-96
  •  
  • 10. Hance, R.J., 1967, A relationship between partition data and the adsorption of some herbicides by soils, Nature, 214, 630-631
  •  
  • 11. Heyse, E.C., Mika, D.J., de Venoge, T.P., Coulliette, D.L., and McGowin, A., 1999, General radial diffusion model for heterogeneous sorbents, Environ. Toxicol. Chem., 18, 1694-1700
  •  
  • 12. Jenks, B.M., Roeth, F.W., Martin, A.R., and McCallister, D.L., 1998, Influence of surface and subsurface soil properties on atrazine sorption and degradation, Weed Sci., 46, 132-138
  •  
  • 13. Johnson, M.D., Keinath, T.M., and Weber, W.J., 2001, A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates, Environ. Sci. Technol., 35, 1688-1695
  •  
  • 14. Karickhoff, S.W., 1980, Sorption kinetics of hydrophobic pollutants in natural sediments, In: R.A. Baker (ed.), Contaminants and Sediments: Analysis, Chemistry, and Biology, Ann Arbor Press: Ann Arbor, MI. p. 193-205
  •  
  • 15. Khan, S.U., 1991, Bound (nonextractable) pesticide degradation products in soils, Am. Chem. Soc. Symp. Ser. 459. Am. Chem. Soc.. Washington, DC
  •  
  • 16. Kulikova, N.A. and Perminova, I.V., 2002, Binding of atrazine to humic substances from soil, peat, and coal related to their structure, Environ. Sci. Tech., 36, 3720-3724
  •  
  • 17. Laird, D.A., Yen, P.Y., Koskinen, W.C., Steinheimer, T.R., and Dowdy, R.H., 1994, Sorption of Atrazine on Soil Clay Components, Environ. Sci. Tech., 28, 1054-1061
  •  
  • 18. Lambert, S.M., Porter, P.E., and Schieferstein, H., 1965, Movement and sorption of chemicals applied to the soil, Weeds, 13, 185-190
  •  
  • 19. Lambert, S.M., 1967, Functional relationship between sorption in soil and chemical structure, J. Agr. Food Chem., 15, 572-576
  •  
  • 20. Leboeuf, E.J. and Weber, W.J., 2000, Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior, Environ. Sci. Techol., 34, 3632-3640
  •  
  • 21. Lesan, H.M. and Bhandari, A., 2003, Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis, Water Res., 37, 644-1654
  •  
  • 22. Loehr, R.C. and Webster, M.T., 1996, Behavior of fresh vs aged chemicals in soil, J. Soil Contam., 5, 361-383
  •  
  • 23. Lyman, W.J., Reehl, W.F., and Rosenblatt, D.H., 1990, American Chemical Society, Washington, DC
  •  
  • 24. Ma, L., Southwick, L.M., Willis, G.H., and Selim, H.M., 1993, Hysteretic Characteristics of Atrazine Adsorption-Desorption by a Sharkey Soil, Weed Sci., 41, 627-633
  •  
  • 25. McCall, P.J. and Agin, G.L., 1985, Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxicol. Chem., 4, 37-44
  •  
  • 26. Miller, C.T. and Pedit, J.A., 1992, Use of a Reactive Surface-Diffusion Model to Describe Apparent Sorption Desorption Hysteresis and Abiotic Degradation of Lindane in a Subsurface Material, Environ. Sci. Technol., 26, 1417-1427
  •  
  • 27. Park, J.-H., Zhao, X., and Voice, T.C., 2001, Biodegradation of Non-desorbable Naphthalene in Soils, Environ. Sci. Technol., 35, 2734-2740
  •  
  • 28. Park, J.-H., Zhao, X., and Voice, T.C., 2002, Development of a kinetic basis for bioavailability of naphthalene in soil slurries, Water Res., 36, 1620-1628
  •  
  • 29. Park, J.-H., Feng, Y., Ji, P., Voice, T.C., and Boyd, S.A., 2003, Bioavailability Assessment of Soil-Sorbed Atrazine, Appl. Environ. Microbiol., 69, 3288-3298
  •  
  • 30. Pignatello, J.J., 1990, Slowly reversible sorpiton of aliphatic halocarbons in soils. 1. formation of residual fractions, Environ. Toxicol. Chem., 9, 1107-1115
  •  
  • 31. Radosevich, M., Traina, S.J., and Tuovinen, O.H., 1997, Atrazine mineralization in laboratory-aged soil microcosms inoculated with s-triazine-degrading bacteria, J. Environ. Qual., 26, 206-214
  •  
  • 32. Sharer, M., Park, J.-H., Voice, T.C.., and Boyd, S.A., 2003, Aging effects on the sorption/desorption characteristics of anthropogenic organic compounds in soil, J. Environ. Qual., 32, 1385-1392
  •  
  • 33. Sheng, G.Y., Johnston, C.T., Teppen, B.J., and Boyd, S.A., 2001, Potential contributions of smectite clays and organic matter to pesticide retention in soils, J. Agric. Food Chem., 49, 2899-2907
  •  
  • 34. Weber, W.J. and Huang, W.L., 1996, A distributed reactivity model for sorption by soils and sediments .4. Intraparticle heterogeneity and phase- distribution relationships under nonequilibrium conditions, Environ. Sci. Technol., 30, 881-888
  •  
  • 35. Xie, H., Guetzloff, T.F., and Rice, J.A., 1997, Fractionation of pesticide residues bound to humin, Soil Sci., 162, 421-429
  •  
  • 36. Xing, B. and Pignatello, J.J., 1996, Time-dependent isotherm shape of organic compounds in soil organic matter: implications for sorption mechanism, Environ. Toxicol. Chem., 15, 1282-1288
  •  
  • 37. Young, T.M. and Weber, W.J., 1995, A distributed reactivity model for sorption by soils and sediments. 3. Effect of diagenetic processes on sorption energetics. Environ. Sci. Technol, 29, 92-97
  •  

This Article

  • 2005; 10(1): 26-34

    Published on Feb 1, 2005