• Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine
  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun;
  • Department of Environmental Engineering, Kwangwoon University;Department of Environmental Engineering, Kwangwoon University;Department of Environmental Engineering, Kwangwoon University;
  • 폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용
  • 황정성;최상일;한상근;
  • 광운대학교 환경공학과;광운대학교 환경공학과;광운대학교 환경공학과;
Abstract
Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

본 연구는 플럭 형성 비소 오염토양에 대한 토양세척기법 적용시 최적의 운전조건을 도출하고자 하였으며, 대상 시료는 D 폐철광산 토양을 선정하였다. 최적의 cut-off size는 전체 토양 중량에 대하여 약 $94\%$ 정도의 분포를 보이는 0.15 mm ($\#100$체)이었다. 수산화나트륨과 염산 모두 비소 제거에 효과적이었고, 진탕비 (토양[g]:세척용액[mL])는 2가지 세척제에 대하여 1:5가 최적 조건임을 알 수 있었다. 토양세척시 형성되는 플럭에 대하여 비소 농도를 파악한 결과, 여타 pH조건에서보다 pH $5\~6$에서 형성된 플럭의 건조 비소 농도가 $990\~1,086\;mg/kg$ dry solids로 높음을 알 수 있었다. 따라서, 세척효율의 향상 여부를 파악하기 위하여 토양세척시 형성되는 플럭의 제거 유무에 따른 연속 토양세척 실험을 수행하였다. 0.2 M염산을 사용하여 플럭을 제거한 토양을 염산 1 M로 세척한 다음 1 M 수산화나트륨으로 연속 세척한 결과, 비소 농도는 약 1.5 mg/kg dry soil을 보였다. 각 단계마다 발생된 세척유출수기 비소 농도는 약 $2\~3\;mg/L$이었으나, 각각의 세척유출수를 혼합하는 경우 비소 농도가 $50\;{\mu}g/L$ 이하로 감소되었는제 이는 비소가 응집${\cdot}$침전으로 제거되는데 유리한 pH조건으로 변환되기 때문인 것으로 판단된다.

Keywords: Arsenic;Floc;Sequential soil washing;Hydrochloric acid;Sodium hydroxide;

Keywords: 비소;플럭;연속 토양세척;염산;수산화나트륨;

References
  • 1. 환경부, 2002a, 토양오염공정시험법
  •  
  • 2. 환경부, 2002b, 토양환경보전법
  •  
  • 3. 환경부, 2003, 폐금속광산 토양오염실태 일제조사
  •  
  • 4. Kim, J. Y., Davis, A. P., and Kim, K. W., 2003, Stabilization of Available Arsenic in Highly Contaminated Mine Tailings Using Iron, Environ. Sci. Technol., 37, 189-195
  •  
  • 5. Tokunaga, S. and Hakuta, T., 2002, Acid washing and stabilization of an artificial arsenic-contaminated soil, Chemosphere, 46, 31-38
  •  
  • 6. US EPA, 1997a, Method 9080, Cation-Exchange Capacity of Soils (Ammonium Acetate): Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (SW846), Washington, DC
  •  
  • 7. US EPA, 1997b, Method 3050B, Acid Digestion of Sediments, Sludges, and Soils: Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (SW846), Washington, DC
  •  
  • 8. US EPA, 2002, Arsenic Treatment Technologies for Soil, Wastes, and Water (EPA/542/R/02/004), Washington, DC
  •  
  • 9. West, C. C. and Harwell, J. F., 1992, Surfactant and Subsurface Remediation, Environ. Sci. Technol., 26, 2324-2330
  •  
  • 10. William, C. and Anderson, P. E., 1993, Innovative Site Remediation Technology: Soil Washing/Soil Flushing, American Academy of Environmental Engineers, 3, 4.3
  •  

This Article

  • 2005; 10(1): 58-64

    Published on Feb 1, 2005