• Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils
  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho;
  • Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;
  • Enhanced Bioslurping system을 이용한 유류오염 토양의 복원
  • 김대은;서승원;김민경;공성호;
  • 한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;
Abstract
Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

토양의 유류오염복원에 가장 널리 사용되어지는 Bioslurping system은 Pump and Treatment (P&T), Soil Vapor Extraction (SVE), 그리고 Bioventing (BV) 공정을 복합한 지중(in-situ) 복원기술이라 할 수 있다 그러나 Bioslurping system은 비휘발성 유기물질, 난분해성 유기물질을 처리에 어려움을 가지고 있어 이를 보완할 수 있는 Modified Fenton 반응을 이용한 Hybrid process system의 동시처리 가능성을 실험하였다. 디젤로 오염된 사질토양복 원에 있어서 SVE 공정에 의한 복원과정에서 디젤 제거율이 진공압에 비례하여 증가하였으나 토양에 강하게 흡착된 디젤 성분중의 비휘발성 물질처리에는 한계가 있음을 나타내었다. 또한 지표면과 지하에서 제거 효율의 차이를 나타냄으로서 지표면 또는 추출정과 거리가 멀어질수록 SVE 공정의 효율이 감소하는 것을 확인하였으며 이는 원통형반 응기에서 공기의 흐름이 반구형태로 유도되는 것에 기인한다고 판단된다. Modified Fenton 반응과의 생물학적 화학적 Co-oxidation을 이용한 디젤의 처리의 경우에는 Modified Fenton 반응의 효율이 낮게 나타나 0.1% (wt) 과산화수소가 존재함에 있어서도 92.8%의 높은 디젤분해능을 나타냄으로서 과산화수소가 유류분해 미생물에 산소원으로 사용될 수 있는 것은 확인하였으나 Co-oxidation의 가능성이 현저하게 떨어지는 것으로 보인다. Modified Fenton 반응에서 철 착체물로서 NTA를 사용했을 때가 EDTA를 사용했을 때보다 더 높은 효율을 갖는 것과 괴산화수소의 농도가 높아지면서 Modified Fenton 반응의 효율도 증가하는 것을 확인하였다. 대표적인 방향족, 지방족 화합물 (aromatic, aliphatic compound)인 toluene, hexadecane을 오염원으로 한 Modified Fenton 반응에서 상대적으로 지방 족 화합물의 상대적 안정성으로 인하여 그 효율이 방향족 화합물에 비해 크게 감소하는 것으로 나타났다. 또한 디젤을 오염물로 사용하였을 경우, 최소 10% 이상의 과산화수소에서 그 효율을 나타내어 Bioslurping system에 의한 처리 후 토양에 잔존하는 디젤의 Modified Fenton 반응 공정을 이용한 복원기술의 복합화 가능성을 확인하였다.

Keywords: Bioslurping;Modified Fenton reaction;Hydrogen Peroxide;Diesel;Soil;

Keywords: Modified Fenton 반응;과산화수소;디젤;토양;

References
  • 1. 토양오염공정시험법, 2002
  •  
  • 2. Brown, R.A. and Crosbie, J.R., 1994 , Oxygen source for in situ Bioremediation. Bioremediation: Field Experience, Lewis Publishers, 311-331
  •  
  • 3. ISO 10694, 1995, Soil Quality - Determination of organic and total carbon after dry combustion(elementary analysis), International Organisation for Standardisation. Geneva, Switzerland. p 7
  •  
  • 4. Johnson, P.C., Stanley, C.C., Kemblowski, M.W., Byers, D.L., and Colthart, J.D., 1990, 'A Practical Approach to the Design, Operation, and Monitoring of In Situ Soil-Venting Systems, Groundwater Monitoring Review. Spring
  •  
  • 5. Kakarla, P. and Watts, R.J., 1997, 'Depth of Fenton-like oxidation in remediation of surface soils', J. Environ. Eng. 123, 11-17
  •  
  • 6. Prince, R.C., Clark, J.R, and Lindstrom, J.E., 1994, Bioremediation of the Exxon Valdez oil spill: Monitoring safety and efficacy: Hinchee, R.E., Alleman, B.C., Hoeppel, R. E., Miller, R. N.(eds), Hydrocarbon Bioremediation, Lewis Publishers, London, 107-204
  •  
  • 7. Thien, S.J. and Graveel, G.J., 1997 Laboratory Manual for Soil Science, 7th edition, WCB McGraw-Hill
  •  
  • 8. USEPA, 1995b, How to evaluate alternative cleanup technologies for underground storage tank sites, EPA-510-B-95-007
  •  
  • 9. Watts, R.J., Haller, D.R., Jones, A.P., and Teel, A. L., 2000, A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton's reactions, Journal of Hazardous Materials, B76, 73-89
  •  
  • 10. Watts, R.J., Spencer, C.J., and Stanton, P.C., 1994, 'On site treatment of contaminated soils using catalyzed peroxide', US Washington state Department of Transportation final report
  •  
  • 11. Watts, R.J. and Stanton, P.C., 1999, 'Process conditions for the mineralization of a hexadecane in soils using catalyzed hydrogen peroxide', Water Res. 33, 1405-1414
  •  

This Article

  • 2005; 10(2): 35-43

    Published on Apr 1, 2005