• Surfactant Selection for the Enhanced Biological Degradation of Toluene
  • Kim Yong-Sik;Son Young-Gyu;Khim Jee-Hyeong;Song Ji-Hyeon;
  • Dept. of Civil & Environmental Engineering, Korea University;Dept. of Civil & Environmental Engineering, Korea University;Dept. of Civil & Environmental Engineering, Korea University;Dept. of Civil & Environmental Engineering, Sejong University;
  • Toluene의 생물학적 분해능 향상을 위한 계면활성제의 선정
  • 김용식;손영규;김지형;송지현;
  • 고려대학교 사회환경시스템공학과;고려대학교 사회환경시스템공학과;고려대학교 사회환경시스템공학과;세종대학교 토목환경지구정보공학부;
Abstract
Surfactants can be used to enhance the mass transfer rate of hydrophobic compounds into the biologically active liquid phase, resulting in an increase in biodegradation rate of toluene. In this study, the mass transfer rate and the biocompatibility of toluene in the presence of various surfactants were evaluated. Four anionic and non ionic surfactants were tested: sodium dodecyl sulfate (SOS), TritonX-100, Tween 80, and BYK-345 (silicone surfactant). Experimental results showed that BYK-345 at the critical micelle concentration (CMC) enhanced the solubility of toluene. However, there was no increase in the solubility of toluene by SOS and TritonX-100 at their CMCs. With the addition of each surfactant into deionized water the mass transfer rate became faster than that of the case with no surfactant. A bottle study using toluene-degrading microorganisms showed that SOS seriously reduced toluene removal presumably due to the toxicity of the anionic surfactant and/or the substrate competition between the surfactant and toluene. In addition, the degradation rate of toluene was decreased in the presence of BYK-345, indicating that BYK-345 adversely affects the activity of microorganisms. However, TritonX-100 and Tween 80 did not decrease the degradation rate of toluene significantly. Rather, at the low concentration of TritonX-100 toluene degradation rate was even increased. Overall the experimental results suggest that TritonX-100 be the appropriate surfactant for enhanced biological degradation of toluene.

계면활성제는 소수성 물질(톨루엔)의 물질전달율을 증가시켜 미생물이 있는 액상으로 잘 녹아들어가게 함으로써 미생물에 의한 분해를 증가시킨다. 본 연구에서는 여러 종류의 계면활성제가 존재할 때 톨루엔의 물질전달율과 미생물에 의한 분해가 어떻게 이루어지는지에 대해 알아보았다. 사용한 계면활성제는 다음과 같다: Sodium Oodecyl Sulfate (SOS), TritonX-100, Tween 80, BYK-345 (silicone 계면활성제). 실험결과에 따르면 BYK-345는 critical micelle concentration (CMC)에서 톨루엔의 용해도를 증가시켰다. 하지만, SDS와 TritonX-100는 CMC에서 톨루엔의 용해도를 증가시키지 못했다. 증류수에 계면활성제를 첨가하면 증류수만 있는 경우보다 톨루엔의 물질전달율$(K_La)$이 증가했다. 톨루엔 분해 미생물을 이용한 회분식 실험에서 SOS는 톨루엔의 분해를 감소시켰다. 그 이유는 SDS가 미생물에 독성을 미쳤기 때문일 수도 있고, 기질로서 이용되어서 톨루엔과 경쟁관계에 놓였기 때문일 수도 있다. BYK-345를 계면활성제로 사용한 실험에서도 톨루엔의 분해가 감소했는데 이것은 BYK-345가 미생물의 활성도에 심각한 영향을 미쳤기 때문이다. 하지만, TritonX-100 와 Tween 80의 경우에는 톨루엔의 분해가 크게 감소하지 않았다. 낮은 농도의 TritonX-100의 경우에 오히려 톨루엔의 분해는 증가했다. 이와 같은 결과들을 통해 톨루엔의 생물학적 분해를 위해 가장 적절한 계면활성제는 TritonX-100임을 알 수 있었다.

Keywords: Surfactant;Biocompatibility;Toluene solubility;Mass transfer rate;

Keywords: 계면활성제;생물친화성;톨루엔 용해도;물질전달율;

References
  • 1. Chang, M.C., Huang, C.R., and Shu, RY., 2000, Effects of surfactants on extraction of phenanthrene in spiked sand, Chemosphere, 41, 1295-1300
  •  
  • 2. Cserhati, T., Forgacs, E., and Oros, G., 2002, Biological activity and environmental impact of anionic surfactants, Environ. International, 28, 337-348
  •  
  • 3. Deeb, R.A. and Alvarez-Cohen, L., 1999, Temperature effect and substrate influence during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous, Biotechnol. Bioeng., 62(5), 526-536
  •  
  • 4. Deeb, R.A. and Alvarez-Cohen, L., 1999, Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnol. Bioeng., 62(5), 526-536
  •  
  • 5. Deshpande, S., Shiau, BJ., Wade, D., Sabatini D.A., and Harwell, J.R, 1999, Surfactant selection for enhancing ex situ soil washing, Water Res., 33(2), 351-360
  •  
  • 6. Edwards, D.A., Luthy, R.G., and Liu, Z., 1991, Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, Environ. Sci. Technol, 25(1), 127-133
  •  
  • 7. Falatko, D.M., 1991, Effects of biologically reduced surfactants on the mobility and biodegradation of petroleum hydrocarbons, MS thesis, Virginia Polytechnic Institute and State University, Blackburg, VA
  •  
  • 8. Goudar, C., Strevett, K., and Grego, J., 1999, Competitive substrate biodegradation during surfactant- enhanced remediation, J. Environ. Eng., 125(12), 1142-1148
  •  
  • 9. Heyder, B.D., Vanrolleghem, P., and Lagenhove, H.V., 1997, Kinetic characterization of mass transfer limited biodegradation of a low water soluble gas in batch experiments-Necessity for multiresponse fitting, Biotechnol. Bioeng., 55(3), 512-519
  •  
  • 10. Hill, RM, 1999, Siloxane surfactant. In: Hill RM, editor. Silicone surfactants, New York: Marcel Dekker Inc
  •  
  • 11. Hiller G.K. and Wandruszka R.V., 1995, Decontamination of oilpolluted soil by cloud point extraction. Talanta, 42(1), 83-88
  •  
  • 12. Huang, H.L., Lee, W.M., and Grace, 2001, Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration, Chemosphere, 44, 963-972
  •  
  • 13. Kim, I.S., Park, J.S., and Kim, K.W., 2001, Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem., 16, 1419-1428
  •  
  • 14. Maurice, R., Porter & Associates Handbook of Surfactants, 2nd ed., 1994
  •  
  • 15. Muligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, Surfactantenhanced remediation of contaminated soil: A review, Eng. Geol., 60, 371-380
  •  
  • 16. Muligan. C.N. and Gibbs, B.F., 1993, Factors influencing the economics of biosurfactants, In: Kosaric, N (Ed.), Biosurfactants, Production, Properties, Applications. marcel Dekker, New York, p. 329-391
  •  
  • 17. Song, J.H., 2001, Control and characterization of biomass activity and distribution in vapor-phase bioreactor for VOC removal, Doctoral thesis, the University of Texas at Austin
  •  
  • 18. Staudinger, J. and Roberts, P.V., 2001, A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561-576
  •  
  • 19. Yang, C. and Zhu, X, 2004, Removal of a volatile organic compound in a hybrid rotting drum biofilter, J. Environ. Eng., 130(3), 282-291
  •  
  • 20. Yeh, D.H., Pennell, K.D., and Pavlostathis, S.G, 1999, Effect of Tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene, Environ. Toxicol. Chem., 18(7), 1408-1416
  •  

This Article

  • 2005; 10(4): 26-32

    Published on Aug 1, 2005