• Influence of Solution pH on Pyrene Binding to Sorption-Fractionated and Kaolinite-Bound Humic Substance
  • Hur Jin;
  • Korea Institute of Water and Environment, KOWACO;
Abstract
Changes in pyrene binding by dissolved and kaolinite-associated humic substances (HS) due to HS adsorptive fractionation processes were examined using purified Aldrich humic acid (PAHA) at different pH (4, 7 and 9). Irrespective of solution pH, molecular weight (MW) fractionation occurred upon adsorption of PAHA onto kaolinite, resulting in the deviation of residual PAHA MW from the original MW prior to sorption. Variation in $K_{OC}$ by bulk PAHA was observed at different pH due to relative contributions of partitioning and size exclusion effects (i.e., specific interactions). For all pH conditions investigated, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions $(K_{OC}(res))$ were different from the original dissolved PAHA $K_{OC}$ value $(K_{OC}(orig))$ prior to contact with the kaolinite suspensions. Positive correlations between pyrene $(K_{OC}(res))$ and weight-average molecular weight $(MW_W)$ for residual PAHA fractions were observed for pH 7 and 9. However, such a positive correlation was not found at pH 4 due to the absence of the dramatic fractionation observed for high pH conditions (i.e., exclusive fractionation with respect to higher MW), suggesting that actual MW distribution pattern is more important for sorption-fractionated HS than the composite MW value. For adsorbed PAHA, conformational changes of PAHA upon adsorption seem to be important for the extent of pyrene binding. At relatively high pH (7 and 9), lower extent of pyrene binding was observed for adsorbed PAHA versus nonadsorbed PAHA. The conformation effects were more pronounced at higher pH.

다양한 pH 조건하에서 휴믹물질 흡착적 분획현상에 의해 변화하는 용존 및 kaolinite에 흡착된 휴믹물질(Aldrich 휴믹산)과의 pyrene의 결합변화를 조사하였다. 먼저 흡착효과를 배제한 흡착 전 상태에서 bulk 휴믹산은, pH에 따른 분배(partitioning)과 크기별 배제효과 영향 차이에 의해 유기탄소 결합계수의 변화를 보였다. 모든 용액 pH 조건에 서 Aldrich 휴믹산은 kaolinite에 흡착하는 과정에서 분자량별 분획이 일어났으며 용존 휴믹산의 분자량은 흡착전의 분자량과는 달랐다. 그에 따라 흡착 후 남은 휴믹산과의 pyrene 결합계수는 흡착 전의 경우와 달랐다. pH 7과 9 조건에서 흡착 후 남은 휴믹산은 그 분자량과 pyrene 결합계수 사이에 양성 상관관계를 보였으나 그러한 상관관계가 pH 4의 조건하에서는 관찰되지 않았다. 이러한 차이는 흡착적 분획과정에서 pH 4인 경우 고분자에 대한 독점적 분획현상이 없었고 분자량에 대해 다소 균일한 분획이 일어났다는 점으로 설명할 수 있었다. 또한 관찰되는 분획현상 차이는 pH 조건에 따라 달라지는 흡착포화 정도 차이 때문인 것으로 사료된다. 흡착된 PAHA의 경우, 형태변화 (conformational changes) pyrene 결합에 중요한 것으로 나타났다. pH 7과 9 조건 하에서, 흡착전의 휴믹산의 경우 더 낮은 pyrene 결합계수를 보였고 이러한 형태변화효과는 pH가 높을수록 더 크게 나타났다.

Keywords: Humic substances (HS);Hydrophobic organic contaminants (HOCs);Organic carbon normalized binding coefficient $(K_{OC})$;Adsorptive fractionation;kaolinite;

Keywords: 휴믹물질;소수성 유기오염물;유기탄소 결합계수;흡착적 분획;

References
  • 1. Carter, C.W. and Suffet, I.H., 1982, Binding of DOT to dissolved humic materials, Environ. Sci. Technol., 16, 735-740
  •  
  • 2. Chin, Y.P., Aiken, G.R., and Danielsen, K.M., 1997, Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity, Environ. Sci. Technol., 31, 1630-1635
  •  
  • 3. Clapp, C.E., Mingelgrin, U., Liu, R., Zhang, H., and Hayes, M.H.B., 1997, A quantitative estimation of the complexation of small organic molecules with soluble humic acids, J. Environ. Qual., 26, 1277-1281
  •  
  • 4. Gauthier, T.D., Shane, E.C., Guerin, W.F., Seitz, W.R., and Grant, C.L. 1986, Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials, Environ. Sci. Technol., 20, 1162-1166
  •  
  • 5. Gu, B., Schmitt, J., Chen, Z., Liang, L. and McCarthy, J.F., 1994, Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and model, Environ. Sci. Technol. 28, 38-46
  •  
  • 6. Hur, J. and Schlautman, M.A., 2003a, Using selected operational descriptors to examine the heterogeneity within a bulk humic substance, Environ. Sci. Technol., 37, 880-887
  •  
  • 7. Hur, J. and Schlautman, M.A., 2003b, Molecular weight fractionation of humic substances by adsorption onto minerals, J. Colloid Interf. Sci. 264, 313-321
  •  
  • 8. Hur, J. and Schlautman, M.A., 2004a, Effects of pH and phosphate on the adsorptive fractionation of purified Aldrich humic acid on kaolinite and hematite, J. Colloid Interf. Sci., 277, 264-270
  •  
  • 9. Hur, J. and Schlautman, M.A., 2004b, Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated HS, Environ. Sci. Tech. 38, 5817-5877
  •  
  • 10. Hur, J., 2004c Polycyclic aromatic hydrocarbon (PAH) binding to dissolved humic substances (HS): Size exclusion effect, J. KoSSGE, 9(3), 12-19
  •  
  • 11. Jones, K.D. and Tiller, C.L., 1999, Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic, Environ. Sci. Technol., 33(4), 580-587
  •  
  • 12. Johnson, W.P. and Amy, G.L., 1995, Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments, Environ. Sci. Technol., 29, 807-817
  •  
  • 13. Kretzschmar, R., Hesterberg, D., and Sticher, H., Effects of adsorbed humic acid on surface charge and flocculation of kaolinite, Soil Sci. Soc. Am. J., 61, 101-108
  •  
  • 14. Laor, Y., Farmer, W.J., Aochi, Y., and Strom, P.F. Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid, Wat. Res. 32(6), pp1923-1931 (1998)
  •  
  • 15. Liu, H. and Amy, G., 1993, Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater, Environ. Sci. Technol., 27, 1553-1562
  •  
  • 16. McCarthy, J.F., and Zachara, J.M., 1989, Subsurface transport of contaminants, Environ. Sci. Technol., 23, 496-502
  •  
  • 17. Schlautman, M.A. and Morgan J.J., 1993a, Binding of a fluorescence hydrophobic organic probe by dissolved humic substances and organically-coated aluminum oxide surfaces, Environ. Sci. Technol. 27, 2523-2532
  •  
  • 18. Schlautman, M.A. and Morgan, J.J., 1993b, Effect of aquatic chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials, Environ. Sci. Technol. 27(5), 961-969
  •  
  • 19. Schlautman, M.A. and Morgan, J.J., 1994, Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry, Geochim. Cosmochim. Acta, 58(20), 4293-4303
  •  
  • 20. Sposito, G., 1984, The Surface Chemistry of Soil. Oxford Univ. Press, New York
  •  
  • 21. Stevenson, F.J., 1994, Humus Chemistry: Genesis, Composition, Reactions, Wiley, New York
  •  
  • 22. Thurman, E.M., 1985, Organic Geochemistry of Natural Waters, Martinus Nijhoff/Junk Publishers, Dordrecht, The Netherlands
  •  
  • 23. Xing, B., Pignatello, J.J., and Gigliotti, B., 1996, Competitive sorption between atrazine and other organic compounds in soils and model sorbents, Environ. Sci. Technol., 30, 2432-2440
  •  
  • 24. Zhou, Q., Cabaniss, S.E., and Maurice, P.A., 2000, Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances, Wat. Res. 34(14), 3505-3514
  •  
  • 25. Zhou, Q., Maurice, P.A., and Cabaniss, S.E., 2001, Size fractionation upon adsorption of fulvic acid on goethite: Equilibrium and kinetic studies, Geochim. Cosmochim. Acta, 65(5), 803-812
  •  

This Article

  • 2005; 10(5): 61-69

    Published on Oct 1, 2005