• Geochemistry of the Heunghae, Pohang Geothermal Fields, Korea
  • Yun Uk;Cho Byong-Wook;
  • Korea Institute of Geoscience and Mineral Resources;Korea Institute of Geoscience and Mineral Resources;
  • 포항 흥해지역 지열대의 지화학
  • 윤욱;조병욱;
  • 한국지질자원연구원;한국지질자원연구원;
Abstract
The geothermal research has been carried out on the Heunghae, Pohang geothermal area know as having geo-heat-flow area in the Korean peninsula. This study results so far indicate that geothermal water in the area is in peripheral waters of hydrothermal area and is not in equilibrium with the reservoir rock. The average oxygen and hydrogen stable isotope values are as follows: deep groundwater $(average:\;{\delta}^{18}O=-10.1\%_{\circ},\;{\delta}D=-65.8\%_{\circ})$, intermediate groundwater (average: $(average:\;{\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ})$, shallow groundwater $(average:\;{\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ})$, surface water $(average:\;{\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ})$ respectively. Deep groundwaters was originated from a local meteoric water recharged from distant, topographically high mountain region and not affected by the sea water. High temperature zone inferred from water geothermometers is around D-1, D-5, D-6, 1-04 well zones. The estimated enthalpy from Silica-enthalpy mixing model is near 410 kJ/kg, which corresponds to the temperature of $98^{\circ}C$, and in consistent with the result of Na-K and K-Mg geothermometer.

한반도의 고 지열류량 지대에 속하는 포항시 흥해지역 일대에 대한 지열수 조사를 수행하였다. 그 결과 이 지역 지열수는 지열수대 연변부로서 저류암과 완전평형을 이루지 못하는 것으로 나타났다. 동위원소분석 결과 심부 지하수(평균: ${\delta}^{18}O=-10.1\%_{\circ},\;{\delta}D=-65.8\%_{\circ}$), 중간심도(평균: ${\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ}$), 천부지하수(평균: ${\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ}$), 지표수(평균: ${\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ}$)를 보여 심부지하수는 강우에서 기원하였고, 지형적으로 고도가 높은 지역에서 함양되었으며, 해수의 영향을 받지 않았음이 밝혀졌다. 물 지질온도계를 이용한 결과 D-2, D-5, D-6, I-04부근에서 이상 고온대가 추정된다. 실리카-엔탈피 혼합모델 추정결과 저류대 온도는 410 kJ/kg으로서 $98^{\circ}C$에 해당하여 Na-K 및 K-Mg온도계에 의한 추정결과와 일치한다.

Keywords: Geothermal water;Geothermometer;Mixing model;

Keywords: 지열수;지질온도계;혼합모델;

References
  • 1. 김형찬, 임정웅, 강필종, 1992, 영일 신광지구 온천 종합조사보고서, 한국자원연구소, 온천조사보고서, 92-5(87), p. 159
  •  
  • 2. 문상호, 이철우, 성기성, 김용제, 2000, 포항(성곡)지구 온천공조사보고서, 한국자원연구소, 온천공조사보고서, 2000-2(273), p. 62
  •  
  • 3. 송윤호외 27인, 2003, 심부지열에너지 개발사업, 일반-03(연차)-01, 한국지질자원연구원, p. 85
  •  
  • 4. 송윤호외 31인, 2004, 심부지열에너지 개발사업, 일반-04(연차)-01, 한국지질자원연구원, p. 226
  •  
  • 5. 엄상호, 이동우, 박봉순, 1964, 한국지질도(1 : 50,000)포항도폭, 국립지질조사소, p. 21
  •  
  • 6. 이광식, 정재일, 1997, 포항강수의 안정동위원소 조성변화, 자원환경지질 30, 321-325
  •  
  • 7. 이정환, 엄상호, 김종수, 1967, 포항천연가스후보지구 지질 및 물리탐사종합보고. 국립지질조사소, p.44
  •  
  • 8. Abdelkarim, S.A.A.S., 1999, The Geochemistry of themal fluid in the geothermal field near Alia airport in Jordan and Selfoss geothermal fieldn, S-Icelands, geothermal training programme, United Nations University, Report 13(13) 333-356
  •  
  • 9. Arnorsson, S., 1975, Application of the silica geothermometer in low-temperature hydrothermal areas in Iceland. Am. J. of Sci., 275, 763-783
  •  
  • 10. Arnorsson, S., Gunnlaugsson, E., and Svavarsson, H., 1983, The chemistry of geothermal waters in Iceland III, Chemical geothermometry in geothermal investigations, Geochim. Cosmochim. Acta, 47, 567-577
  •  
  • 11. Arnorsson, S., 2000, Mixing processes in upflow zones and mixing models. In: Arnorsson, S. (ed.), Isotopic and chemical techniques in geothermal exploration, development and use. Sampling methods data handling, interpretation, IAEA, Vienna, p.200-202
  •  
  • 12. Barcelona, M.J., Gibb, J.P., Helfrich, J.A. and Garske, E.E., 1985, Practical guide for groundwater sampling, SWS Contract Report 374, p. 94
  •  
  • 13. Bodvarsson, G., and Palmason, G., 1961, Exploration of subsurface temperatures in Iceland, Jokull, 11, 39-48
  •  
  • 14. Fournier, R.O., 1977, Chemical geothermometers and mixing models for geothermal systems, Geothermics, 5, 41-50
  •  
  • 15. Fournier, R.O., 1981, Application of water geochemistry to geothermal exploration and reservoir engineering. In: Rybach, L. and Muffler, L.J.P. (eds.), geothermal systems: Principles and case histories, John Wiley & Sons Ltd., Chichester, p. 109-143
  •  
  • 16. Giggenbach, W.F., 1988, geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators, Geochim. Cosmochim. Acta, 52, 2749-2765
  •  
  • 17. Giggenbach, W.F., 1991, Chemical techniques in geothermal exploration. In: D'Amore, F. (coordinator), Applications of geochemistry in geothermal reservoir development, UNITAR/UNDP publication, Rome, p. 119-142
  •  
  • 18. Hwang, I.G., 1993, Fan-delta systems in the Pohang basin(Miocene), SE Korea, PhD Thesis, Seoul Nat'l Univ, p. 97
  •  
  • 19. Lee, H.S., 1977, Chemical composition of petrographic assemblage of igneous and related rocks in south Korea, J. Korea. Inst. Mining Geol., 10, 75-92
  •  
  • 20. Maria, I.M.B., 1999, Geochemical interpretation of themal fluid discharge from wells and springs in Berlin geothermal Fields, El Salvador, geothermal training programme, United Nations University, Report, 7, p. 165-191
  •  
  • 21. Shibata, K., Uchita, S., and Nakagawa, T., 1979, K-Ar age result 1. Bull. Geol. Surv. Japan, 30, 675-686
  •  
  • 22. Sohn Y.K., Rhee, C.W., and Sohn, H., 2001, Revised stratigraphy and reinterpretation of the Miocene Pohang basinfills, SE Korea: sequence development in response to tectonic and eustassy in a back-arc basin margin, Sedimentary Geology, 143, 265-285
  •  

This Article

  • 2005; 10(6): 45-55

    Published on Dec 1, 2005