• Performance Evaluation of the Field Scale Sequential Washing Process for the Remediation of Arsenic-Contaminated Soils
  • Choi Sang Il;Kim Kang Hong;Han Sang-Keun;
  • Department of Environmental Engineering Kwangwoon University;Department of Environmental Engineering Kwangwoon University;Department of Environmental Engineering Kwangwoon University;
  • Field 규모 연속 토양세척공정을 이용한 비소 오염토양 정화 효율 평가
  • 최상일;김강홍;한상근;
  • 광운대학교;광운대학교;광운대학교;
Abstract
This study was carried out to evaluate the feasibility of field-scale sequential soil washing process for remediation on Kyongsangnamdo D mine soils which was heavily contaminated by arsonic. Arsenic concentration of untreated soils was $321\pm32mg/kg$. By applying the basic operating condition which was proposed from several pilot-scale experiments, arsenic concentration of treated soils was reduced 2.04 mg/kg ($99\%$ removal efficiency). We optimized the basic operating condition (mainly on washing solution concentration, cut-off size, and mixing ratio) to improve efficiently and economically the field-scale sequential soil washing process. The resulting optimized conditions were that solution concentration is 0.2M HCl, 1.0M HCl, 1.0M NaOH, that the cut-off size is 0.15mm (seive $\sharp$100), and that the mixing ratio is 1 3. Also, the optimized pH value for soil washing effluent treatment was 6 (33 ppb), in which the precipitation disruption caused by supersaturation of the floe did not occur. Results of TCLP tests showed that arsenic concentration from the washed gravels was 1.043 mg/L, that from soils ND (not detected), and that from filter cakes 0.066 mg/L. Also, the water content as a percentage of dewatered sludges was low $(48\%)$ and so the dewatered sludges can be disposed by landfilling. Through these results, we can concluded that tile field-scale sequential soil washing process developed in this study is adopted for remediation of arsenic-contaminated soils.

고농도 비소 오염토양에 대한 fold규모 연속 토양세척공정의 적용 가능성을 평가하기 위해 경상남도 D광산 광미 혼합토양에 대하여 적용하였다. 초기 비소오염 농도는 $321\pm32 mg/kg$ dry soil 이었으며 pilot규모 실험에서 도출된 기본 운전조건을 적용한 결과, 세척된 토양의 잔류 비소농도는 2.03 mg/kg dry soil로서 $99\%$의 높은 제거효율을 나타내었다. 경제성 및 효율성을 개선하기 위하여 세척제의 농도, cut-off size, 진탕비를 조절하며 운전한 결과, 토양세척 공정 운전시 원활한 운전관리와 처리단가 등을 고려한 최적의 운전조건은 1) 각 단계의 세척제 농도 0.2M HCl-1.0M HCl-1.0M NaOH, 2) cut-off size 0.15mm(sieve $\sharp$100), 3) 진탕비 1:3으로 처리한 결과 세척된 토양의 잔류 비소농도는 2.03mg/kg이었으며 세척유출수 처리에서는 형성된 Hoc의 과포화로 인한 침전방해가 발생하지 않는 pH 6이 (33 ppb) 최적의 처리조건으로 판단되었다. 최종 배출된 청정자갈 및 토양, 티ter cake에 대하여 TCLP법을 적용한 용출실험 결과, 각각 1.04, ND, 0.07 mg/L 모두 용출비소 농도기준(5 mg/L)을 만족하며, 탈수슬러지의 함수율$(48\%)$도 폐기물관리법의 슬러지 수분함량 기준$(85\%)$을 만족하여 매립처리가 가능함을 알 수 있었다. 따라서 본 연구의 field 규모 연속 토양세척공정은 고농도 비소 오염부지의 정화를 위한 기술로 적용 가능함을 확인할 수 있었다.

Keywords: Arsenic;Field scale sequential soil washing process;Economical operation condition;pH;TCLP;

Keywords: 비소;Field 규모 연속 토양세척공정;경제적 운전조건;

References
  • 1. 이효민, 윤은경, 최시내, 박송자, 황경엽, 조성용, 김선태, 1998, 폐광산 지역의 비소오염에 대한 복원목표 설정: 미래 토지용도를 고려한 접근방법, 한국토양환경학회지, 3(2), 13-29
  •  
  • 2. 환경부, 2002a, 토양오염공정시험법
  •  
  • 3. 환경부, 2002c, 토양환경보전법
  •  
  • 4. 환경부, 2002b, 폐기물공정시험법
  •  
  • 5. 환경부, 2002d, 폐기물관리법
  •  
  • 6. 황정성, 최상일, 장민, 2004, 비소로 오염된 토양에 대한 토양세척기법의 적용성 연구, 한국지하수토양환경학회지, 9(1), 104-111
  •  
  • 7. 황정성, 최상일, 한상근, 2005, 폐 철광산주변 비소로 오염된 토양에 대한 연속세척기법의 적용, 한국지하수토양환경학회지, 10(1), 58-64
  •  
  • 8. Ford, R.G., 2002, Rates of Hydrous Ferric Oxide Crystallization and the Influence on Coprecipitation Arsenate, Environ. Sci. Technol., 36(11), 2459-2463
  •  
  • 9. Gregor, J., 2001, Arsenic Removal during Conventional Aluminium-Based Drinking-Water Treatment, Wat. Res., 35(7), 1659-1664
  •  
  • 10. Kim, J.Y., Davis, A.P., and Kim, K.W., 2003, Stabilization of Available Arsenic in Highly Contaminated Mine Tailings Using Iron, Environ. Sci. Technol., 37, 189-195
  •  
  • 11. USEPA, 1997a, Innovative Treatment Technologies: Annual Status Report 7th ed., EPA 542-R-95-008
  •  
  • 12. USEPA, 1997b, Test Methods for Evaluating Solid wastes, Physical/Chemical Methods (SW846), 3rd ed. U.S. Government Printing Office: Washington, DC
  •  
  • 13. West, C.C. and Harwell, J.F., 1992, Surfactant and Subsurface Remediation, Environ. Sci. Technol., 26(12), 2324-2330
  •  

This Article

  • 2005; 10(6): 68-74

    Published on Dec 1, 2005