• The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction
  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon;
  • Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources;Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources;Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources;
  • 광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향
  • 강민주;이평구;김상연;
  • 한국지질자원연구원 지질환경재해연구부;한국지질자원연구원 지질환경재해연구부;한국지질자원연구원 지질환경재해연구부;
Abstract
Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

이번 연구는 광미시료를 대상으로 반응시간(1, 2, 4, 7, 14, 21 및 30일)과 반응용액의 pH(1, 3 및 5)를 달리하여 실내 용출실험을 실시하였다. pH 5와 pH 3의 반응용액과의 용출실험에서는 반응 2일 후 최종 pH가 4.6-6.1 혹은 2.8-3.5로 안정화되었으며, 반응시간이 지남에 따라 점진적으로 낮아졌다. 황산염 농도와 산도는 7일 이후 증가하는 것이 관찰되었는데, 이는 황화광물의 산화작용때문인 것으로 판단된다 pH 5와 pH 3에서 용출된 Pb 함량은 반응기 간(1-30일) 동안 뚜렷한 변화가 보이지 않은 반면에 Zn, Cd 및 Cu는 시간이 지남에 따라 용출함량이 증가하는 경향을 보였다. 반응용액 pH 1에서의 용출특성은 Zn 형태(Zn, Cd, 및 Cu)와 Pb 형태(Pb)로 구분되었다. Zn 형태는 시간에 따라 용출함량이 증가되었고, 이는 지속적인 용해작용에 의한 것이다. Pb 형태는 시간에 따라 용출농도가 감소하였으며, 이는 황산염의 용출함량이 높아짐에 따라 용해된 Pb가 앵글레사이트(anglesit)로 침전됨을 지시한다. 높은 황산염 농도는 Fe, Zn, 및 Cd의 높은 용출함량과 밀접한 관련이 있다. 이들 용출실험 결과 Zn과 Cd의 용출과 산도는 광산주변 환경의 지표수와 지하수 수질에 악영향을 주는 요인이 될 수 있다. 용출반응에서 kinetics 문제는 광미가 빗물과 반응하여 유출수에서의 중금속 농도를 증가시킬 수 있는 중요한 요인이 된다.

Keywords: Tailings;pH;Leaching;Kinetics;Heavy metal ;

Keywords: 광미;용출;중금속 ;

References
  • 1. 강민주, 2003, 청양 . 서보 중석광산 주변 토양의 중금속 오염에 관한 광물학적 . 환경지구화학적 연구 : 자연정화와 환경관리 측면에서의 고찰. 충북대학교 석사 학위논문, p. 178
  •  
  • 2. 강민주, 이평구, 최상훈, 신성천, 2003, 서보광산 폐광석 내 2차광물에 의한 중금속 고정화, 자원환경지질학회지, 36(3), 177-189
  •  
  • 3. 기상청, 2005, 기상관측자료, http://www.kma.go.kr
  •  
  • 4. 환경부, 2004, 대기환경연보(2003)
  •  
  • 5. Chung, Y.S., Kim, T.K., and Kim, K.H., 1996, Temporal variation and cause of acidic precipitation from a monitoring network in Korea, Atmos. Environ. 30, 2429-2435
  •  
  • 6. Courtin-Nomade, A., Bril, H., Neel, C., and Lenain, J.F. (2003) Arsenic in iron cements developed within tailings of a former metalliferous rnine-Enguiales, Aveyron. France. Appl. Geochem., 18, 395-408
  •  
  • 7. Dold, B. and Fontbote, L., 2002, A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile, Chem. Geol., 189, 135-163
  •  
  • 8. Frau, F., 2000, The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications, Mineral. Mag., 64, 995-1006
  •  
  • 9. Lee, B.K., Hong, S.H., and Lee, D.S., 2000, Chemical composition of precipitation and wet deposition of major ions on the Korean peninsular, Atmos. Environ., 34, 563-575
  •  
  • 10. Lee, P.K., Kang, M.J., Choi, S.H., and Touray, J.C., 2005, Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea, Appl. Geochem., 20, 1687-1703
  •  
  • 11. Mascaro, I., Benvenuti, B., Corsini, F., Costagliola, P., Lattanzi, P., Parrini, P., and Tanelli, G., 2001, Mine wastes at the polymetallic deposit of Fenice Capanne(southern Tuscany, Italy). Mineralogy, geochemistry, and environmental impact, Environ. Geol., 41, 417-429
  •  
  • 12. McGregor, R.G., Blowes, D.W., Jambor, J.L., and Robertson, W.D., 1998, The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada, J. Contaminant Hydrol., 33, 247-271
  •  
  • 13. Parkhurst, D.L., 1995, Users Guide to PHREEQC-A Computer Program for Speciation, Reaction-path, Advective-transport, and Inverse Geochemical Calculation. U.S. Geol. Survey Water Resources Inv. Rept., 95-4227
  •  
  • 14. Shaw, S.C., Groat, L.A., Jambor, J.L., Blowes, D.W., Hanton-Fong, C.J., and Stuparyk, R.A., 1998, Mineralogical study of base metal tailings with various sulfide contents, oxidized in laboratory columns and field lysimeters, Environ. Geol., 33, 209-217
  •  

This Article

  • 2006; 11(1): 23-36

    Published on Feb 1, 2006