• Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment
  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik;
  • Department of Chemical Engineering, Kyungpook National University;Department of Environmental Engineering, Kyungpook National University;Department of Environmental Engineering, Andong National University;Department of Chemical Engineering, Kyungpook National University;
  • 생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험
  • 황보현욱;신원식;김영훈;송동익;
  • 경북대학교 화학공학과;경북대학교 환경공학과;안동대학교 환경공학과;경북대학교 화학공학과;
Abstract
The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

생물벽체(biobarrier) 또는 원위치 미생물 필터(in situ microbial filter) 기술을 이용한 염소계 유기용매로 오염된 지하수의 복원 가능성을 회분식 실험을 통하여 살펴보았다. PCE의 환원성 탈염소화의 효율과 속도는 수소 농도에 의존하는 것으로 알려져 있다. 본 연구에서는 분변토와 토탄을 생물벽체로 이용한 PCE의 환원성 탈염소화시 전자공여체의 영향을 살펴보았다. 유기산(lactate, butyrate benzoate)과 yeast extract, 비타민 $B_{12}$가 PCE의 환원성 탈염소화에 미치는 영향을 조사하였다. 생물벽체 담체 비존재시, 전자공여체를 투여하지 않은 control 실험에 비해, 전자공여체의 첨가는 PCE의 탈염소화 속도를 촉진하였다. 전자공여체를 투여한 실험 중에서 lactate 또는 lactate/benzoate를 수소 공여체(hydrogen donor)로 첨가된 경우, 탈염소화 속도가 가장 빨랐다($k_1=0.0260{\sim}0.0266\;day^{-1}$). 분변토를 생물벽체로 사용한 경우, lactate/benzoate 첨가시 탈염소화 속도가 가장 빨랐으며, 겉보기 1차 분해속도상수($k_1$)는 $0.0849day^{-1}$였다. 반면, Pahokee peat을 생물벽체로 사용하였을 경우, butyrate 또는 lactate의 첨가시 탈염소화 속도가 가장 빨랐으며 $k_1$ 값은 각각 0.1092, $0.1067\;day^{-1}$로 나타났다. 본 연구결과로부터 분변토 또는 토탄을 원위치 생물벽체로 사용하여 염소계 유기용매로 오염된 지하수 처리의 잠재적인 응용 가능성을 알 수 있었다.

Keywords: Biobarrier;Reductive dechlorination;Electron donor;Organic acid;Peat;Vermicompost;

Keywords: 생물벽체;환원성 탈염소화;전자공여체;유기산;토탄;분변토;

References
  • 1. Ballapragada, B.S., Stensel, H.D., Puhakka, J.A., and Ferguson, J.F., 1997, Effect of hydrogen on reductive dechlorination of chlorinated ethenes, Environ. Sci. Technol., 31(6), 1728-1734
  •  
  • 2. Binger, C.A., Martin, J.P., Allen-King, R.M., Fowler, M., 1999, Variability of chlorinated-solvent sorption associated with oxidative weathering of kerogen J. Contam. Hydrol., 40, 137-158
  •  
  • 3. Brusseau, M.L. and Rao, P.S.C., 1991, Influence of sorbate structure on nonequilibrium sorption of organic compounds, Environ Sci Technol., 25, 1501-1506
  •  
  • 4. Brusseau, M.L., 1991, Cooperative sorption of organic chemicals in systems composed of organic carbon aquifer materials, Environ Sci Technol., 25, 1747-1752
  •  
  • 5. Burris, D.R., Delcomyn, C.A., Smith, M.H., and Roberts, A.L., 1996, Reductive dechlorination of tetrachloroethene and trichloroethylene catalyzed by vitamin $B_{12}$ in homogenous and heterogenous systems, Environ. Sci. Technol., 30(10), 3047-3052
  •  
  • 6. Carr, C.S. and Hughes, J.B., 1998, Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity, Environ. Sci. Technol., 32, 1817-1824
  •  
  • 7. Cornellison, G., Hassell, K.A., van Noorst, P.C.M., Kraaij, R., van Erkeren, P.J., Dijkema, C., de Jager, P.A., and Govers, H.A.J., 1997a, Slow desorption of PCBs and chlorobenzenes from soils and sediments: Relations with sorbent and sorbate characteristics, Environ. Pollut., 108, 69-80
  •  
  • 8. Cornellison, G., Rigterink, H., Vrind, B.A., ten Hulscher, D.Th.E.M., Ferdinary, M.M.A., and van Noorst, P.C.M., 1997b, Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminant sediment, Chemosphere, 35(10), 2405-2416
  •  
  • 9. Fennell, D.E. and Gossett, S.H., 1997, Comparison of butyric acid, ethnol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environ. Sci. Technol., 31(3), 918-926
  •  
  • 10. Grathwohl, P., 1990, Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on $K_{OC}$ correlations, Environ. Sci. Technol., 24(11), 1687-1693
  •  
  • 11. Guerin, W.F. and Boyd, S.A., 1992, Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Appl. Environ. Microbiol., 58, 1142-1152
  •  
  • 12. Ho, Y. and McKay, G., 2000, The kinetics of sorption of divalent metal ions onto sphagnum peat moss, Water Res., 34(3), 735-742
  •  
  • 13. House, J.S., 2002, Enhanced bioremediation of 1,1,2,2-tetrachloroethane in wetland soils, M.S. Thesis, Louisiana State University, Baton Rouge, LA, USA
  •  
  • 14. Hungate, R.E., 1969, A roll tube method for cultivation of strict anaerobes, In: Methods in Microbiology, Vol. 3b, Norris, J.R. and Robbins, D.W.(ed.), Academic Press, New York
  •  
  • 15. Isalou, M., Sleep, B.E., and Liss, S.N., 1998, Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system, Environ. Sci. Technol., 32(22), 3579-3585
  •  
  • 16. Kao, C.M. and Lei, S.E., 2000, Using a peat biobarrier to remediate PCE/TCE contaminated aquifers, Water. Res., 34(3), 835- 845
  •  
  • 17. Kao, C.M., Chen, S.C., and Liu, J.K., 2001, Development of biobarrier for the remediation of PCE-contaminated aquifer, Chemosphere, 43, 1071-1078
  •  
  • 18. Kassenga, G.R., Pardue, J.H., Blair, S., and Ferraro, T., 2003, Treatment of chlorinated volatile organic compounds in upflow wetland mesocosms, Ecol. Eng., 19, 305-353
  •  
  • 19. Kassenga, G.R., Pardue, J.H., Moe, W.M., and Bowman, K.S., 2004, Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands, Environ Sci. Technol. 38, 1024- 1030
  •  
  • 20. Kim, Y-H. and Carraway, E.R., 2003, Dechlorination of chlorinated ethenes and acetylenes by palladized iron, Environ. Technol., 24, 809-819
  •  
  • 21. Lendvay, J.M., Loffler, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., Shi, J., Krajmalnik-Brown, R., Major, C.L., Barcelona, M.J., Petrovskis, E., Hickey, R., Tiedje, J.M., and Adriaens, P., 2003, Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431
  •  
  • 22. Li, J. and Werth, C.J., 2001, Evaluating competitive sorption mechanim of volatile organic compounds in soils and sediments using polymers and zeolites, Environ. Sci. Technol., 35, 569-574
  •  
  • 23. Li, J. and Werth, C.J., 2004, Slow desorption mechanism of volatile organic chemical mixtures in soil and sediment micropores, Environ. Sci. Technol., 38, 440-448
  •  
  • 24. Lorah, M.M. and Olsen, L.D., 1999, Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence, Environ. Sci. Technol., 33, 227-234
  •  
  • 25. Lorah, M.M. and Voytek, M.A., 2004, Degradation of 1,1,2,2- tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater, J. Contam. Hydrol., 70, 117-145
  •  
  • 26. Lorah, M.M., Olsen, L.D., Capone, D.G., and Baker, J.E., 2001, Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments, Bioremediation J., 5, 101-118
  •  
  • 27. Nzengung, V.A., Nkedi-Kizza, P., Jessup, R.E., and Voudrias, E.A., 1997, Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays, Environ. Sci. Technol., 31, 1470-1475
  •  
  • 28. Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soil: Experimental design, Environ. Sci. Technol., 33, 1193-1199
  •  
  • 29. Pardue, J.H., Kassenga, G.R., and Shin, W.S., 2000, Design approaches for chlorinated VOC treatment wetlands, In: Means, J.L. and Hinchee, R.E. (eds.). Wetlands and Remediation, An International Conference, Battelle Press, p. 301-308
  •  
  • 30. Schaefer, C.E. Schuth, C., Werth, C.J., and Reinhard, M., 2000, Binary desorption isotherm of TCE and PCE from silica gel and natural solids, Environ. Sci. Technol., 34, 4341-4347
  •  
  • 31. Schollhorn, A., Savary, C., Stucki, G., and Hanselmann, K.W., 1997, Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions, Water. Res., 31, 1275-1282
  •  
  • 32. Shawabkeh, R.A. and Tutunji, M.F., 2003, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24(1-2), 111-120
  •  
  • 33. Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1996, Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture, Environ. Sci. Technol., 30, 2850-2858
  •  
  • 34. Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethylene, Environ. Sci. Technol., 31, 918-926
  •  
  • 35. Stuer-Lauridsen, F. and Pederson, F., 1997, On the influence of the polarity index of organic matter in predicting environmental sorption of chemicals, Chemosphere, 35(4), 761-773
  •  
  • 36. Taylor, R.T., Hanna, M.L., Shah, N.N., Shonnard, D.R., Duba, A.G., Durham, W.B., Jackson, K.J., Knapp, R.B., Wijesinghe, A.M., Knezovich, J.P., and Jovanovich, M.C., 1993, In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotropic microbial filter, Hydrological Sci. J., 38, 323-342
  •  
  • 37. Warith, M.L., Fernandes, L., and Gaudet, N., 1999, Design of in-situ microbial filter for the remdediation of naphthalene, Waste Manage., 19, 9-25
  •  
  • 38. Wood, S., Trobaugh, D.J., and Carter, K.J., 1999, Polychlorinated biphenyl reductive dechlorination by vitamin $B_{12}s$: Thermodynamics and regiospecificity, Environ. Sci. Technol., 33, 857-863
  •  
  • 39. Xing, B., McGill, W.B., and Dudas, M.J., 1994, Cross correlation of polarity curves to predict partition coefficients of nonionic contaminants, Environ. Sci. Technol., 28, 1929-1933
  •  
  • 40. Yang, Y. and McCarty, P.L., 1998, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Environ. Sci. Technol., 32, 3591-3597
  •  
  • 41. Yerushalmi, L., Manuel, M.F., and Guiot, S.R., 1999, Biodegradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation, 10, 341-352
  •  
  • 42. Zou, S., Stensel, H.D., and Ferguson, J.F., 2000, Carbon tetrachloride degradation: effect of microbial growth substrate and vitamin $B_{12}$ content, Environ. Sci. Technol., 34, 1751-1757
  •  

This Article

  • 2006; 11(2): 22-37

    Published on Apr 1, 2006