• A Study for Reductive Degradation and Surface Characteristics of Hexachloroethane by Iron Sulfide ($FeS,\;FeS_{2}$)
  • Park Sang-Won;Kim Sung-Kuk;Heo Jae-Eun;
  • Faculty of Environmental Science and Engineering, Keimyung University;Faculty of Environmental Science and Engineering, Keimyung University;Faculty of Environmental Science and Engineering, Keimyung University;
  • 황화철($FeS,\;FeS_{2}$)을 이용한 헥사클로로에탄의 환원적 분해반응과 표면특성에 관한 연구
  • 박상원;김성국;허재은;
  • 계명대학교 환경학부;계명대학교 환경학부;계명대학교 환경학부;
Abstract
The following results were obtained in the reductive degradation of hexachloroethane (HCA), and surface characteristics by using iron sulfide ($FeS,\;FeS_{2}$) mediators. HCA was degraded to pentachloroethane (PCA), tetrachloroethylene(PCE), trichloroethylene(TCE) and cis-l,2-dichloroethylene (cis-1,2-DCE) by complicated pathways such as hydrogenolysis, dehaloelimination and dehydrohalogenation. FeS had more rapid degradation rates of organic solvent than $FeS_{2}$. In liquidsolid reaction, the reaction rates of organic solvents were investigated to explain surface characteristics of FeS and $FeS_{2}$.. To determine surface characteristics of FeS and $FeS_{2}$, the specific surface area and surface potential of each mineral was determined and the hydrophilic site ($N_{s}$) was calculated. The specific surface area ($107.0470m^{2}/g\;and\;92.6374m^{2}/g$) and the $pH_{ZPC}$ of minerals ($FeS\;PH_{ZPC}=7.42,\;FeS_{2},\;PH_{ZPC}=7.80$) were measured. The results showed that the Ns of FeS and $FeS_{2}$ were $0.053\;site/mm^{2}\;and\;0.205\;site/mm^{2}$, respectively. $FeS_{2}$ had more hydrophilic surface than FeS. In other words, FeS have more hydrophobic surface site than $FeS_{2}$.

본 논문에서는 황화철($FeS,\;FeS_{2}$) 유기 용매의 환원적 분해 반응과의 표면특성의 관계에 대해서 다음과 같은 결과를 얻었다. hexachloroethane(HCA)은 수소첨가반응, 탈염소제거반응과 탈수소탈염소화반응으로 pentachloroethane(PCA), tetrachloroethylene(PCE), trichloroethylene(TCE)와 cis-1,2-dichloroethylene(cis-1,2-DCE)로 분해되었다. FeS와 $FeS_{2}$를 반응 매개물로 HCA에 대한 반응에서 FeS는 $FeS_{2}$보다 분해반응 속도가 빠르게 나타났다. FeS와 $FeS_{2}$의 표면 특성 연구에서 각 광물질에 대한 친수성 표면 자리(Ns)를 정량적으로 계산하기 위해서 비표면적 값($107.0470m^{2}/g$$92.6374m^{2}/g$)과 표면 전위를 측정에 측정된 $PH_{ZPC}(FeS,\;PH_{ZPC}=7.42,\;FeS_{2},\;PH_{ZPC}=7.80)$ 값을 이용해서 계산한 결과 FeS와 $FeS_{2}$$N_{s}$값은 각각 $0.053\;site/nm^{2},\;0.205\;site/nm^{2}$으로 나타났다. 그리고 0.2 g/L Fe광물질에 대한 실질적인 친수성 표면 농도는 각각 $3.303{\times}10^{-6}\;mol/L$$1.102{\times}10^{-5}\;mol/L$ 나타났다. $FeS_{2}$는 FeS에 비해 훨씬 친수성 표면임을 실험 결과 확인하였다. FeS와 $FeS_{2}$의 두 광물질 중에서 유기 용매의 환원 반응 속도는 FeS가 훨씬 빠르게 나타났다.

Keywords: Reductive degradation;Chlorinated compounds;Iron sulfide;Hydrophilic & phobic site;

Keywords: 환원적 분해반응;염소계 유기오염물질;황화철;친수 & 소수성 표면자리;

References
  • 1. 김성국, 박상원, 2004, 철 광물에 의한 헥사클로에탄의 환원적 분해, 반응속도 연구, 한국지하수토양환경, 9(2), 20-27
  •  
  • 2. Barbash, J. and Roberts, P.V., 1986, Volatile organic chemical contamination of ground water resources in the U. S., J. Water Poll. Control Feder., 58, 343-348
  •  
  • 3. Benjamin, M.M. and Leckie, J.O., 1989, Multiple-site adsorption of Cd, Cu, Zn, and Pb on amophous iron oxyhydroxide. J. Colloid lntf. Sci., 79, 209
  •  
  • 4. Butler, E.C. and Kim, F.H., 1999, Kinetics of the transformation of trichloroethene and tetrachloroethylene by iron sulfide, Environ. Sci. Technol., 33, 2021-2027
  •  
  • 5. Chern, J.M., 1987, Simulation of colloidal destabilization with metal coagulants, Ph. D Thesis, University of Delaware
  •  
  • 6. Davis, J.A.R., James, O., and Leckie, J.O., 1978, Surface ionization and complexation at the oxide/water interface, J. Colloid Intf Sci., 63, 480
  •  
  • 7. Day, R.E. and Parfitt, G.D., 1967, Adsorption at the solid-liquid interface. J. Phys. Chem., 71, 3073
  •  
  • 8. Fan, A.M., 1988, Trichloroethylene: water contamination and health risk assessment, In: G. W. Ware, Reviews of Environmental Contamination and Toxicology, Spronger-Verlag, New York, NY., p. 55-92
  •  
  • 9. Haim A., 1983, Mechanisms of electron transfer reaction, The bridged activated complex, Progr. Inorg. Chem., 30, 273-357
  •  
  • 10. Huang, C.P., 1981, The surface acidity of hydrous solide, adsorption of inorganics at solid-liquid interface, Ed., Anderson, M. A. and Rubin, A. J., Ann Arbor Science, Ann Arbor, Mich
  •  
  • 11. Matheson, L.J. and Trathnyek, G., 1994, Reductive dehalogenation of chlorinated methanes by iran metal. Environ. Sci. Technol., 28(12), 2045-2053
  •  
  • 12. Park, S.W. and Huang, C.P., 1989, Chemical substitution reaction between Cu(II) and Hg(II) and Hydrous CdS(s)., Water Research, 23, 1527
  •  
  • 13. Park, S.W., 1987, Specific chemical reaction at the cadmimum sulfide-water interface. Ph. D. Thesis, University of Delaware
  •  
  • 14. Silverman J. and Dodson, R.W., 1952, The exchange reaction between the two oxidation states of iron in acid solution, J. Phys. Chem., 56, 846-852
  •  
  • 15. Sivavec, T.M., Homey, D.P., Baghel, S.S., 1995, Emerging technologies in hazardous waste management VII, ACS Special Symposium, September, 17-20
  •  
  • 16. Stumm, W., Kummert, R., and Sigg, L., 1980, A liquid exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interference, Croat. Chim. Acta., 52, 291-302
  •  
  • 17. Sun, Z., Forsling, W., Ronngren, L., and Sjoberg, S., 1991, J. miner. Process, 33, 83-93
  •  
  • 18. Vogel, T.M., Criddle, C.S., and McCarty, P.L., 1987, Transformations of halogenated aliphatic compounds. Environ. Sci. Technol., 21(8), 1023-1030
  •  
  • 19. Wehrli, B., 1990, Redox reactions of metal ions at mineral surfaces, Aquatic chemical kinetics: Reaction rates of processes in natural waters, Ed., Stumn, M., John Wiley & Sons, Inc., p. 311-336
  •  
  • 20. William, A.A., William, P.B., and Roberts, L., 1999, Polychlorinated ethane reaction with zero-valent zinc, pathways and rate control, J. Contaminant Hydrology, 40, 183-200
  •  

This Article

  • 2006; 11(5): 35-42

    Published on Oct 31, 2006