• Optimal Method of Radon Analysis in Groundwater using Ultra Low-Level Liquid Scintillation Counter
  • Kim Yong-Je;Cho Soo-Young;Yoon Yoon-Yeol;Lee Kil-Yong;
  • Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);Korea Institute of Geoscience and Mineral Resources (KIGAM);
  • 극 저준위 액체섬광계수기를 이용한 지하수 중 라돈($^{222}Rn$) 측정법 연구
  • 김용제;조수영;윤윤열;이길용;
  • 한국지질자원연구원 지하수지열연구부;한국지질자원연구원 지하수지열연구부;한국지질자원연구원 지하수지열연구부;한국지질자원연구원 지하수지열연구부;
Abstract
Optimal method of radon analysis in groundwater was studied using ultra low-level liquid scintillation counter (ULLLSC) which is well known as an analytical instrument for analyzing the alpha and beta radionuclides in environmental materials. Optimization of pulse shape analyzer (PSA) in operating the LSC was performed with $^{241}Am\;and\;^{90}Sr/^{90}Y$ as well as $^{226}Ra$ Also, the chemical quenching of scintillation generation and the color quenching of the generated photon to photomultiplier tubes (PMT) were determined their effects not only to decrease the analytical efficiency but also to change the optimal PSA level and background due to high ion contents of groundwaters. The optimal PSA level was shown in the range of 90 to 110 with less than 5% error. The effects of high ion contents in groundwater for the analytical efficiency show within 10% error from the different ion contents. The chloroform as a quenching agent was used to determine the analytical efficiency with the different amount, showing that the efficiency decreases 20% using the 2% of chloroform.

환경물질에 함유된 극 저준위 알파, 베타핵종의 측정에 효과적인 것으로 알려진 극 저준위 액체섬광계추기(ultra low-level liquid scintillation counter, ULL-LSC)를 이용하여 지하수 중 라돈($^{222}Rn$의 최적 측정방법에 대한 연구를 수행 하였다. 액체섬광계수기의 장점임과 동시에 중요한 실험조건인 파형분석(pulse shape analysis, PSA) 준위의 최적화를 위하여 $^{241}Am$$^{90}Sr/^{90}Y$의 두 표준선원을 이용하는 방법과 $^{226}Ra$ 하나의 표준선원과 측정효율 및 백그라운드를 이용하는 방법을 비교 검토하였다. 또한, 섬광 생성을 방해(chemical quenching)하거나 생성된 광자의 광전증배관(photo multiplier tubes, PMT) 도달을 방해(color quenching)하여 결과적으로 측정효율을 저하시키고 최적 PSA 준위와 백그라운드를 변화 시킬 수 있는 지하수 중 불순물의 영향을 조사하였다. 두 종류 혹은 한 종류의 표준방사선 선원을 사용하여 PSA 준위를 조사한 결과 90에서 110이 최적 이었으며 이 범위에서의 측정효율 차이는 5% 미만이었다. 측정효율에 대한 일반 불순물의 영향은 불순물의 농도차이에 따라서 약 10% 정도의 차이가 발생하였다. 소광시 약(quenching agent)으로 클로로포름(chloroform)의 양을 변화시키면서 조사한 결과 측정효율에 대한 영향이 매우 컸으며 클로로포름의 농도가 2%일 때 측정효율은 약 20%가 낮아졌다.

Keywords: Quantulus LSC;Radon;Groundwater;PSA;Quenching;

Keywords: 액체섬광계수기;라돈;지하수;파형분석;소광효과;

References
  • 1. Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., and Taniguchi, M., 2003, Groundwater and pore water inputs to the coastal zone, Biogeochem., 66, 3-33
  •  
  • 2. Choppin, G.R. and Rydberg, J., 1980, Nuclear Chemistry; Theory and Applications, 1 st ed., Pergamon press, New York, 70-71
  •  
  • 3. Igarashi, G. and Wakita, H., 1990, Groundwater radon anomalies associated with earthquakes, Tectonophysics, 180, 237-254
  •  
  • 4. Khan, H.A., 1993, Usefulness of radon measurements in earth sciences, Nuclear Tracks and Radiation Measurements, 22, 355-364
  •  
  • 5. Kuoa, T., Fana, K., Kuochenb, H., Hana, Y, Chuc, H., and Leed, Y., 2006, Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake, Journal of Environmental Radioactivity, 88(1), 101-106
  •  
  • 6. Low, R., 1996, The Natural Radiation Environment VI; Radon as a natural groundwater tracer in the chalk aquifer, UK, Environment International, 22(1), 333-338
  •  
  • 7. Mulligana, A.E. and Charetteb, M.A., 2006, Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer, J. Hydrol., 327, 411-425
  •  
  • 8. Rusconi, R., Forte, M., Caresana, M., Bellizona, S., Cazaniga, M.T., and Sgorbati, G., 2006, The evaluation of uncertainty in low-level LSC measurements of water samples, Applied Radiation and Isotopes, in press
  •  
  • 9. USEPA, 1992, National Primary Drinking Water Regulations, EPA-5709-91-700
  •  
  • 10. USEPA, 2000, National Primary Drinking Water Regulations, Radionuclides(Final Rule), 40 CFR Parts 9(141), EPA
  •  
  • 11. Yasuokaa, A., Igarashib, G, Ishikawac, T., Tokonamic, S., and Shinogia, M., 2006, Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration, Appl. Geochem., 21(6), 1064-1072
  •  
  • 12. Zmazeka, B., Todorovskia, L., Dzeroski, S., Vaupotic, L., and Kobala, I., 2005, Radon in soil gas: How to identify anomalies caused by earthquakes, Appl. Geochem., 20(6), 1106-1119
  •  

This Article

  • 2006; 11(5): 59-66

    Published on Oct 31, 2006