• Identification of Active Agents for Reductive Dechlorination in Cement/Fe(II) Systems
  • Kim, Hong-Seok;Lee, Yu-Jung;Kim, Ha-Yan;Hwang, In-Seong;
  • Department of Environmental Engineering, Pusan National University;Korea Electrotechnology Research Institute;Department of Environmental Engineering, Pusan National University;Department of Environmental Engineering, Pusan National University;
  • 시멘트와 Fe(II)을 이용한 환원성 탈염소화반응의 유효반응성분 규명
  • 김홍석;이유정;김하얀;황인성;
  • 부산대학교 환경공학과;한국전기연구원;부산대학교 환경공학과;부산대학교 환경공학과;
Abstract
Experimental study was conducted to identify the active agent for reductive dechlorination of TCE in cement/Fe(II) systems. Several potential materials-hematite (${\alpha}-Fe_2O_3$), lepidocrocite (${\gamma}$-FeOOH), akaganeite (${\beta}$-FeOOH), ettringite ($Ca_6Al_2(SO_4)_3(OH)_{12}$)-that are cement components or parts of cement hydrates were tested if they could act as reducing agents by conducting TCE degradation experiments. From the initial degradation experiments, hematite was selected as a potential active agent. The pseudo-first-order degradation rate constant ($k\;=\;0.637\;day^{-1}$) for the system containing 200 mM Fe(II), hematite and CaO was close to that ($k\;=\;0.645\;day^{-1}$) obtained from the system containing cement and 200 mM Fe(II). CaO, which was originally added to simulate pH of the cement/Fe(II) system, was found to play an important role in degradation reactions. The reactivity of the hematite/CaO/Fe(II) system initially increased with increase of CaO dosage. However, the tendency declined in the higher CaO dosage region, implying a saturation type of behavior. The SEM analysis revealed that the hexagonal plane-shaped crystals were formed during the reaction with increasing degradation efficiency, which was brought about by increasing the CaO dosage. It was suspected that the crystals could be portlandite or green rust ($SO_4$) or Friedel's salt. The XRD analysis of the same sample identified the peaks of hematite, magnetite/maghemite, green rust ($SO_4$). Either instrumental analysis predicted the presence of the green rust ($SO_4$). Therefore, the green rust ($SO_4$) would potentially be a reactive agent for reductive dechlorination in cement/Fe(II) systems.

본 연구는 시멘트/Fe(II) 시스템에서 TCE의 환원성 탈염소화에 관여하는 유효반응성분을 규명하기 위하여 수행되었다. 먼저 시멘트 자체에 존재하거나 혹은 그 수화물에 존재하는 성분을 다량 함유하고 있는 hematite(${\alpha}-Fe_2O_3$), lepidocrocite(${\gamma}$-FeOOH), akaganeite(${\beta}$-FeOOH), ettringite($Ca_6Al_2(SO_4)_3(OH)_{12}$)를 대상으로 TCE 분해실험을 수행하여 이러한 물질이 시멘트/Fe(II) 시스템에서 탈염소반응에 관여할 수 있는지 고찰한 결과, hematite가 잠재적 유효반응성분으로 선정되었다. 각 시스템의 반응속도상수를 비교해 본 결과 200 mM Fe(II)에 hematite와 CaO를 1 : 4(몰비)로 주입한 시스템($k\;=\;0.637\;day^{-1}$)이 기존의 cement와 Fe(II)을 이용한 경우($k\;=\;0.645\;day^{-1}$)와 가장 비슷한 동력학적 분해경향을 보인다는 것을 알 수 있었다. 처음에 pH 조절이 주목적으로 주입되었던 CaO 역시 분해반응에서 중요한 역할을 담당하는 것으로 나타났는데, CaO 첨가량이 증가할수록 hematite/CaO/Fe(II) 시스템의 분해능은 증가하다가 CaO 양이 일정 수준에 다다르면 증가세가 둔화되는 경향을 보여 주었다. SEM(Scanning Electron Microscopy) 분석을 통해서는 hematite/CaO/Fe(II) 시스템 내에서 분해능이 커질수록 육각형 판상의 결정이 새롭게 형성된다는 것을 확인 할 수 있었으며 이 결정은 portlandite, green rust($SO_4$), Friedel's salt 등일 가능성이 높은 것으로 판단되었다. 그리고 동일 시료의 XRD(X-Ray Diffraction) 분석을 통해서는 hematite, magnetite/maghemite, green rust($SO_4$)의 존재를 확인할 수 있었다. SEM 및 XRD 분석에서 공통적으로 나타나는 green rust($SO_4$)가 유효반응성분일 가능성이 높다고 판단되었다.

Keywords: Reductive dechlorination;cement;Fe(II);hematite;TCE;green rust ($SO_4$;);

Keywords: 환원성 탈염소화;시멘트;

References
  • 1. 김정배, 2000, 황화철을 이용한 할로겐 화합물의 탈염소화 반응에 관한 연구, J. Nakdongkang Environ. Res. Institute, 5(1), 19-31
  •  
  • 2. 김중호, 강완협, 황인성, 박주양, 2004, Cement/slag/Fe(II)에 의한 TCE 함유 액상폐기물의 분해성 고형화/안정화, 한국폐기물학회지, 21(5), 456-464
  •  
  • 3. 최정윤, Batchelor, B., 2006, High-activity modified green rust에 의한 perchloroethylene 분해, 대한환경공학회 2006춘계학술연구발표회, 대한환경공학회, 킨텍스, p. 193-200
  •  
  • 4. 환경부, 2004, 2003 전국 지하수 수질측정망 운영결과
  •  
  • 5. 환경부, 2003, 2002 전국 지정폐기물의 발생 및 처리현황
  •  
  • 6. 환경부(조태웅), 1998, 유해폐기물의 안정화/고형화 처리기술
  •  
  • 7. Amonette, J.E., Workmanm D.J., Kennedy, D.W., Fruchter, J.S., and Gorby, Y.A., 2000, Dechlorination of carbon tetrachloride by Fe(II) associated with goethite, Environ. Sci. Technol., 34(21), 4606-4613
  •  
  • 8. Antony, H., Legrand, L., Marecha, L., Perrin, S., Dillmann, Ph., and Chausse, A., 2005, Study of lepidocrocite −FeOOH electrochemical reduction in neutral and slightly alkaline solutions at $25^{\circ}C$, Electrochimica Acta, 51, 745-753
  •  
  • 9. Bakoyannakis, D.N., Deliyanni, E.A., Zouboulis, A.I., Matis, K.A., Nalbandian, L., and Kehagias, Th., 2003, Akaganeite and goethite-type nanocrystals synthesis and characterization, Microporous and Mesoporous Materials, 59, 35-42
  •  
  • 10. Baur, I., Keller, P., Mavrocordatos, D., Wehrli, B., and Johnson, C.A., 2004, Dissolution-precipitation behaviour of ettringite, monosulfate and calcium silicate hydrate, Cement and Concrete Research, 34 341-348
  •  
  • 11. Butler, E.C. and Kim, F.H., 2001, Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal, Environ. Sci. Technol., 35(19), 3884-3891
  •  
  • 12. Charlet, L., Silvester, E., and Liger, E., 1998, N-compound reduction and actinide immobolisation in surficial fluid by Fe(II): the surface$\equiv$ FeIIIOFeIIOH0 species, as major reductant, Chemical Geology, 151, 85-93Hwang, I. and Batchelor, B., 2001
  •  
  • 13. Reductive dechlorination of tetrachloroethylenein soils by Fe(II) based degradative solidigication/stabilization, Environ. Sci. Technol., 35(18), 3792-3797
  •  
  • 14. Cheng, S.F. and Wu, S.E., Feasicility of using metals to remediate water containing TCE, Chemosphere, 43, 1023-1028
  •  
  • 15. Choi, J.Y., 2005, Degradation of perchloroethylene and nitrate by high-activity modified green rusts, Ph.D. Dissertation, Texas A&M University, USA, p. 150
  •  
  • 16. Danielsen, K.M. and Hayes, K.F., 2004, pH dependence of carbon tetrachloride reductive dechlorination by Magnetite, Environ. Sci. Technol., 38, 4745-4752
  •  
  • 17. Glasser, F.P., 1997, Fundamental aspect of cement soildification and stabilisation, J. Hazard. Mater., 52, 151-170
  •  
  • 18. Elsner, M., Schwarzenbach, R., and Haderlein, S., 2004, Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants, Environ. Sci. Technol., 38, 799-807
  •  
  • 19. Gregory, V.L. and Martin, R., 1999, Hydrodehalogenenation of 1-to 3-carbon halogenated organic compounds in water using a palladiium catalyst and hydrogen gas, Environ. Sci. Technol., 33(11), 1905-1910
  •  
  • 20. Hawang, I. and Batchelor, B., 2002, Reductive dechlorination of chlorinated methanes in cement slurries containing Fe(II), Chemoshere, 48(10), 1019-1027
  •  
  • 21. Hwang, I., Batchelor, B., Schlautman, M.A., and Wang, R., 2002, Effects of ferrous iron and molecular oxygen on chromium(VI) redox kinetics in the presence of aquifer solids, J. Hazard. Mater., 92(2), 143-159
  •  
  • 22. Hwang, I. and Batchelor, B., 2002 Reductive dechlorination of tetrachloro-ethylene by Fe(II) in cement slurries, Environ. Sci. Technol., 34(23), 5017-5022
  •  
  • 23. Hwang, I. and Batchelor, B., 2000, Reductive dechlorination of tetrachloroethylene in soils by Fe(II) based degradative solidigication/ stabilization, Environ. Sci. Technol., 35, 3792-5022
  •  
  • 24. Kanel, S.R., Manning, B., Charlet, L., and Choi, H.C., 2005, Removal of Arsenic(III) from groundwater by nanoscale zerovalent iron, Environ. Sci. Technol., 39, 1291-1298
  •  
  • 25. Kang, W.H., Hwang, I., and Park, J.Y., 2003, Kinetic of trichloroethylene degradation by steel converter slag amended with Fe(II), 225th ACS National Meeting, 43(1)
  •  
  • 26. Kang, W.H., 2006, Reductive dechlorination of chlorinated ethylenes using cement and steel slag amended with Fe(II), Ph.D. Dissertation, Hanyang University, Seoul, Korea, p. 186
  •  
  • 27. Kim, S.D., Park, K.S., and Gu, M.B., 2002, Toxicity of hexavalent chromium to daphnia magma: influence of reduction reaction by ferrous iron, J. Hazard. Mater., A93, 155-164
  •  
  • 28. Ko, S.B., 2005, Identification of active agents for tetrachloroethylene degradation in portland cement slurry containing fettous iron, Ph.D. Dissertation, Texas A&M University, USA, p. 181
  •  
  • 29. Loyaux-Lawniczak, Stephaie., 2000, Trapping of Cr by formation of ferrihydrite during the reduction of chromate ions by Fe(II)-Fe(III) hydroxysalt green rusts, Environ. Sci. Technol., 34(3), 438-443
  •  
  • 30. Mugtikian, R., 1995, A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water, Water Res., 29(10), 2434-2439
  •  
  • 31. Taylor, H.F.W., 1997, Cement chemistry 2nd ed, Thomas telford, London, England
  •  

This Article

  • 2006; 11(6): 35-42

    Published on Dec 31, 2006