• The Characteristics of Hydrodynamic Dispersion in a Horizontally Heterogeneous Fractured Rock Through Single Well Injection Withdrawal Tracer Tests
  • Kang, Dong-Hwan;Chung, Sang-Yong;Kim, Byung-Woo;
  • Department of Environmental Geosciences, Pukyong National University;Department of Environmental Geosciences, Pukyong National University;Department of Environmental Geosciences, Pukyong National University;
  • 수평적으로 불균질한 단열암반층에서 단공주입양수 추적자시험에 의한 수리분산특성
  • 강동환;정상용;김병우;
  • 부경대학교 환경지질과학과;부경대학교 환경지질과학과;부경대학교 환경지질과학과;
Abstract
Single well injection withdrawal tracer tests with bromide were carried out at two wells developed in a horizontally heterogeneous fractured rock. The hydraulic conductivity of TW-1 well was 5 times larger than TW-2 well, and the average linear velocity of TW-2 well was 1.8 times faster than TW-1 well. The difference of hydrodynamic dispersions of two wells in the fractured rock was studied with the analysis of concentration breakthrough curves and cumulative mass recovery curves of bromide with withdrawal time, and the estimation of average travel distance, pore velocity, longitudinal dispersivity and longitudinal dispersion coefficient. The average travel distances of bromide were estimated to be 3.00 m in TW-1 well and 5.62 m in TW-2 well. The average pore velocities for the injection/withdrawal phase were estimated to be $4.31\;{\times}\;10^{-4}\;m/sec$ in TW-1 well and $8.08\;{\times}\;10^{-4}\;m/sec$ in TW-2 well. Average travel distance and pore velocity were higher in TW-2 well because of small effective porosity. Longitudinal dispersivities were estimated to be 28.73 cm in TW-1 well and 18.49 cm in TW-2 well, and bromide transport was 1.55 times faster in TW-1 well. Longitudinal dispersion coefficients were estimated to be $5.14\;{\times}\;10^{-6}\;m^2/sec$ in TW-1 well and $6.06\;{\times}\;10^{-6}\;m^2/sec$ in TW-2 well, and diffusion area was 1.18 times larger in TW-2 well.

본 연구에서는 단열암반층에 굴착된 2개의 지하수공(TW-1, TW-2)에서 브롬이온을 이용한 단공주입양수 추적자시험 (Single Well Injection Withdrawal tracer test, SWIW tracer test)이 수행되었다. 이 두 지하수공에서는 대수층의 수리전도도와 지하수의 평균선형유속이 다른데, TW-1공에서 수리전도도가 5배 정도 크고, TW-2공에서는 평균선형 유속이 1.8배 정도 빠르다. 추적자시험으로부터 시간에 따른 브롬이온의 농도이력곡선과 누적질량회수곡선이 작성되어 분석되었으며, 또한 평균이송거리, 공극유속, 종분산지수와 종분산계수를 산정하여 단열암반층의 수평적인 불균질성에 따른 수리분산 차이가 해석되었다. 브롬이온의 평균이송거리는 TW-1공에서 3.00 m, TW-2공에서 5.62 m이며, 주입/양수 단계에서 평균적인 공극유속은 TW-1공에서 $4.31\;{\times}\;10^{-4}\;m/sec$, TW-2공에서 $8.08\;{\times}\;10^{-4}\;m/sec$로 산정되었다. TW-2공에서 단열암반층의 유효공극율이 작아서 평균이송거리와 공극유속이 크게 나타났다. 단공주입양수 추적자시험에 의해 산정된 종분산지수는 TW-1공에서 28.73 cm, TW-2공에서는 18.49 cm로서, TW-1공에서 용질이송이 1.55배 정도 빠른 것으로 나타났다. 평균선형유속을 이용하여 구한 종분산계수는 TW-1공에서 $5.14\;{\times}\;10^{-6}\;m^2/sec$, TW-2공에서 $6.06\;{\times}\;10^{-6}\;m^2/sec$로서, TW-2공에서 브롬이온의 확산면적이 1.18배 정도 넓은 것으로 나타났다.

Keywords: Fractured rock;Single well injection withdrawal tracer test;Average travel distance;Pore velocity;Longitudinal dispersivity;Longitudinal dispersion coefficient;

Keywords: 단열암반층;단공주입양수 추적자시험;평균이송거리;공극유속;종분산지수;종분산계수;

References
  • 1. 농업기반공사, 2002, 육군 구2정비창 오염부지 정화사업 공법실증시험, p. 833
  •  
  • 2. 농업기반공사, 2004, 울산광역시 북구 달천동 아파트신축부지 토양오염정밀조사 공법실증시험, p. 322
  •  
  • 3. 대한지질학회, 1999, 한국의 지질, 시그마프레스, p. 802
  •  
  • 4. 박양대, 윤형대, 1968, 방어진도폭, 국립지질조사소, p. 14
  •  
  • 5. (사)한국지하수토양환경학회, 2003, 유산폐기물매립장 침출수 누출원인조사 연구용역보고서, p. 217
  •  
  • 6. (주)범우, 2005, (주)범우 폐기물 매립장 침출수 누출실태 및 대책에 관한 연구 보고서, p. 202
  •  
  • 7. 한정상, 1998, 지하수환경과 오염, 박영사, p. 1071
  •  
  • 8. Bear, J., Tsang, C.F., and de Marsily, G., 1993, Flow and contaminant transport in fractured rock, Academic Press Inc., p. 560
  •  
  • 9. Charbeneau, R.J., 2000, Groundwater Hydraulics and Pollutant Transport, Prentice-Hall, Inc., p. 593
  •  
  • 10. Domenico, P.A. and Schwartz, F.W., 1998, Physical and Chemical Hydrogeology, John Wiley & Sons, Inc., p. 506
  •  
  • 11. Gelhar, L.W. and Collins, M.A., 1971, General analysis of longitudinal dispersion in nonuniform flow, Water Resources Research, 7(6), 1511-1521
  •  
  • 12. Goltz, M.N. and Roberts, P.V., 1987, Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives, Water Resources Research, 23(8), 1575-1585
  •  
  • 13. Haggerty, R., Fleming, S.W., Meigs, L.C., and McKenna, S.A., 2001, Tracer tests in a fractured dolomite, 2. Analysis of mass transfer in single-well injection-withdrawal tests, Water Resources Research, 37(5), 1129-1142
  •  
  • 14. Haggerty, R. and Gorelick, S.M., 1995, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resources Research, 31(10), 2383-2400
  •  
  • 15. Haggerty, R. and Gorelick, S.M., 1998, Modeling mass transfer processes in soil columns with pore-scale heterogeneity, Soil Sci. Soc. Am. J., 62(1), 62-74
  •  
  • 16. Haggerty, R., Schroth, M.H., and Istok, J.D., 1998, Simplified Method of 'Push-Pull' Test Data Analysis for Determining In Situ Reaction Rate Coefficients, Ground Water, 36(2), 314-324
  •  
  • 17. Harvey, J.W., Haggerty, R., and Gorelick, S.M., 1994, Aquifer remediation: A method for estimating mass transfer rate coefficients and an evaluation of pulsed pumping, Water Resources Research, 30(7), 1979-1991
  •  
  • 18. Hoopes, J.A. and Harleman, D.R.F., 1967, Dispersion in radial flow from a recharge well, J. Geophys. Res., 72(14), 3595-3607
  •  
  • 19. Meigs, L.C. and Beauheim, R.L., 2001, Tracer tests in a fractured dolomite, 1. Experimental design and observed tracer recoveries, Water Resources Research, 37(5), 1113-1128
  •  
  • 20. Mercado, A., 1966, Recharge and mixing tests at Yavne 20 well field, Unground Water Storage Study Tech. Rep. 12, Publ. 611, 62 pp., TAHAL-Water Planning for Israel Ltd., Tel Aviv
  •  
  • 21. Neretnieks, I., 1980, Diffusion in the rock matrix: An important factor in radionuclide transport?, J. Geophys. Res., 85(B8), 4379-4397
  •  
  • 22. Neretnieks, I., 1993, Solute transport in fractured rock-Applications to radionuclide waste repositories, in Flow and contaminant Transport in Fractured rock, edited by J. Bear, C.-F. Tsant, and G. de Marsily, p.39-127, Academic, San Diego, Calif
  •  
  • 23. Pickens, J.F. and Grisak, G.E., 1981, Scale-dependent dispersion in a stratified granular aquifer, Water Resources Research, 17(4), 1191-1211
  •  
  • 24. Rao, P.S.C., Jessup, R.E., and Addiscott, T.M., 1982, Experimental and theoretical aspects of solute diffusion in spherical and nonspherical aggregates, Soil Sci., 133(6), 342-349
  •  
  • 25. Sahimi, M., 1995, Flow and transport in porous media and fractured rock, VCH, p. 482
  •  
  • 26. Snodgrass, M.F. and Kitanidis P.K., 1998, A Method to Infer In Situ Reaction Rates from Push-Pull Experiments, Ground Water, 36(4), 645-650
  •  

This Article

  • 2006; 11(6): 53-60

    Published on Dec 31, 2006