• Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils
  • Choi, Sang-Il;Kim, Kang-Hong;
  • Department of Environmental Engineering, Kwangwoon Universiy;Department of Environmental Engineering, Kwangwoon Universiy;
  • 고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구
  • 최상일;김강홍;
  • 광운대학교 환경공학과;광운대학교 환경공학과;
Abstract
Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

유류오염토양에 대한 고압공기분사를 이용한 세척기법의 적용성 연구를 위하여 저유소 주변의 실제 디젤오염토양을 사용하였으며 초기 오염농도는 $2,828{\pm}206\;mg/kg$으로 토양환경보전법상 가지역 우려기준 농도를 5배 이상 초과하였다. 세척공정의 기본 운전인자들에 대한 조건별 효율성 평가 및 최적조건 도출실험을 수행한 결과 효율적인 세척을 위하여 impeller는 편심 및 기울어진 중심에 위치하는 것이 가장 유리하였으며 교반속도는 높은 전단력(shear force)이 발생하는 고속교반조건(300 rpm)에서 세척효율이 가장 우수하였다. 교반시간은 10분이 효율성 및 경제성이 우수한 조건으로 판단되었으며 1차 반응속도식에서 도출된 교반속도별 속도상수들간 증가율 감소를 확인하여, 저속 교반조건(30, 60 rpm)에서도 추가적인 물리적 탈착력이 더해진다면 고속교반조건에서와 같은 제거효율을 얻을 수 있음을 알 수 있었다. 고압공기 분사에 따른 세척효율은 소수성(hydrophobic)의 토양표면 유류물질이 수중의 공기방울 표면에 강하게 부착(attracting)되어 제거됨을 확인하였고 공기압이 높아질수록 반응기내 공기유량이 증가되면서 오염물질의 부착율이 향상되었다. Impeller에 의한 교반과 고압공기 분사 혼합공정에서는 60 rpm, $2\;kg/cm^2$ 조건이 가장 효율적으로 판단되었다. 따라서 고압공기분사를 통한 토양세척기법은 유류오염토양 정화에 효율적 적용이 가능할 것으로 사료된다.

Keywords: Petroleum-contaminated soil;High-pressure air jet;Soil washing;Physical-desorption;Air bubble;

Keywords: 유류오염토양;고압공기분사;토양세척기법;물리적 탈착;기포;

References
  • 1. 조태룡, 2005, 토질역학, 일진사
  •  
  • 2. 한국유기농협회, 2004, 친환경농업-유기농업(1)
  •  
  • 3. 환경부, 2002, 토양오염공정시험법
  •  
  • 4. 환경부, 2005a, 특정토양오염관리대상시설 설치신고 및 검사결과 현황
  •  
  • 5. 환경부, 2005b, 토양환경보전법 시행령.시행규칙 개정
  •  
  • 6. Bhandaril, A., J.T. Novak2, and D.C. Dove, 2000, Effect of soil washing on Petroleum hydrocarbon distribution on sand surfaces, Journal of Hazardous Substance Research, 2, 7.1-7.13
  •  
  • 7. Bogazici Univ. (Turkey), 2003, Chemical Engineering Laboratory I, Chap. 11 Mixing Efficiency in a Stirred Tank
  •  
  • 8. Gschwend, P.M. and S.C. Wu, 1985, On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants, Environ. Sci. Technol. 19(1), 90-96
  •  
  • 9. HANMIX (Korea), 2004, Technology Report
  •  
  • 10. Lee, L.S., P.S.C. Rao, P. Nkedi-Kizza, and J.J. Delfino, 1990, Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol-water and soil-water systems, Environ. Sci. Technol. 24(5), 654-661
  •  
  • 11. Octave, l., 1998, Chemical Reaction Engineering: 3rd ed., Wiley
  •  
  • 12. Rutherford, D.W., C.T. Chiou, and D.E. Kile, 1992, Influence of soil organic matter composition on the partition of organic compounds, Environ. Sci. Technol. 26(2), 366-340
  •  
  • 13. Urum, K., Turgay, P., David, R., and Steve, G., 2005, Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants, Chemosphere, 60, 334-343
  •  
  • 14. Weber, W.J., J.P.M. McGinley, and L.E. Katz, 1992, A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments, Environ. Sci. Technol. 26(10), 1955-1962
  •  
  • 15. William C. and Anderson, P.E., 1993, Innovative site remediation technology soil washing/soil flushing, American Academy of Environmental Engineers, 3, 4.3
  •  

This Article

  • 2006; 11(6): 61-68

    Published on Dec 31, 2006