• Scientific Feasibility on the Risk-Based Clean-up and Management of Contaminated Sites
  • Shin, Won-Sik;
  • Department of Environmental Engineering, Kyungpook National University;
  • "위해성" 개념을 이용한 오염지역 정화 및 관리의 과학적 타당성
  • 신원식;
  • 경북대학교 환경공학과;
Abstract
In the last decades, the decrease in biological or chemical availability of sorbed contaminants as contact time passed, is generally accepted. This phenomenon so called as "aging" or "sequestration" is known to directly affect risk of the contaminats. This was observed for mainly for hydrophobic organic contaminants (HOCs), but also reported for heavy metals. Aging is known to be directly related to sorption-desorption hysteresis, irreversible sorption, desorption-resistance, nonequilibrium sorption, etc. The decrease in bioavailability due to aging or sequestration indicates realistic decrease in risk potential. Recently a risk-based management concept by scientific evidences but not the simple measurement of contaminant concentration has been attempted to determine environmentally acceptable remedial endpoint. This is because selection of remedial endpoint based on not total concentration but the bioavailability and toxicity of contaminants can reduce both the treatment cost and remedial activities of the contaminated sites. The bioavailability and toxicity of the residual contaminants are highly affected by the fate and transport and also directly affect the exposure pathways and bioaccumulation of contaminants in the living biota. In this paper, scientific feasibility on the risk-based clean-up and management of contaminated sites is reviewed.

지난 수십년 동안 토양내 수착된 오염물질이 접촉시간(contact time)이 경과함에 따라 생물학적 또는 화학적 이용성의 감소는 일반적으로 인식되어 오고 있다. 이와 같은 aging 또는 격리(sequestration)라 불리는 현상이 위해성에 직접적인 영향을 미친다는 것이 알려져 있다. 이러한 현상은 소수성 오염물질을 중심으로 보고되어 왔으나, 최근 연구결과에 의하면 중금속의 경우에도 이와 같은 현상이 발견되고 있으며, 이는 오염물질의 흡-탈착 이력(hysteresis) 현상, 비가역 흡착, 탈착저항성, 비평형 흡착 등과 직접적으로 연관된 것으로 알려지고 있다. Aging 또는 sequestration에 의한 오염물질의 생이용성(bioavailability)의 감소는 인체에 대한 실질적인 위해성의 감소를 의미한다. 최근 들어 이와 같은 과학적인 증거를 토대로 단순한 오염물질의 농도 측정이 아니라 위해성에 근거한 오염 복원(또는 관리)의 개념이 도입되어 환경친화적인 복원수준의 선정에 적용하고 있다. 이는 토양내 오염물질의 총농도가 아니라 오염물질의 생이용성 또는 독성을 기준으로 하여 정화수준을 결정함으로써 오염부지의 처리비용과 노력의 절감효과를 동시에 기대할 수 있기 때문이다. 토양내 잔류오염물질의 생이용성 또는 독성은 오염물질의 이동 또는 거동 특성에 의해 영향을 받으며 결국 생물체로의 노출 경로와 생체축적에 직접적인 영향을 미친다. 본 논문에서는 토양내 오염물질의 위해성을 평가하여 토양오염복원에 적용시 과학적인 타당성에 대해 살펴보고자 하였다.

Keywords: Aging;Bioavailability;Desorption;Environmentally acceptable remedial endpoint;Risk assessment;Sequestration;Soil;Sorption;

Keywords: 생이용성;탈착;위해성 평가;토양;흡착;환경친화적인 복원 수준;

References
  • 1. 김영규, 토양내 소수성 유기화합물의 흡착. 탈착거동 및 생물학 적 이용성, 경북대학교 석사학위 논문, 2002
  •  
  • 2. 남경필, 김재영, 2002, 생물학적 이용성과 aging이 오염토양의 정 화수준 결정에 미치는 영향, 대한환경공학회지, 24, 1975-2000
  •  
  • 3. 박준형, 인산염계 화합물과 개질점토를 이용한 중금속 오염토양 의 고정화, 금오공과대학교, 석사학위논문, 2005
  •  
  • 4. 환경부, 토양오염 해성 평가방안 마련을 위한 연구용역: 위해성 에 근거한 토양복원전략 모색, 한국지하수토양환경학회, 2003. pp. 324
  •  
  • 5. Ainsworth, C.C., Pilon, J.L., and Gassman, P.L., 1994, Cobalt, cadmium, and lead sorption to hydrous iron-oxide-residence time effect, Soil Sci. Soc. Am J., 58, 1615-1623
  •  
  • 6. Alexander, M., 2000, Ageing, bioavailability, overestimation of risk from environmental pollutants, Environ. Sci. Technol., 34, 4259-4265
  •  
  • 7. Berti, W.R. and Cunningham, S.D., 1997, In-place inactivation of Pb in Pb-contaminated soils, Environ. Sci. Technol., 31, 1359- 1364
  •  
  • 8. Bonaccorsi, A., di Domenico, A., Fanelli, R., Merli, F., Vanzate, R., and Zapponi, G.A., 1984. The influence of soil particle adsorption on 2,3,7,8-tetrachlorodibenzo-p-dioxin biological uptake in the rabbit. Arch. Toxicol. Suppl. 7, 431-434
  •  
  • 9. Bouchard, D.C., 2003, Cosolvent effects of phenanthrene sorption- desorption on a freshwater sediment, Environ. Toxicol. Chem., 22, 736-740
  •  
  • 10. Chen, M., Ma, K.Q., Singh, A.P., Cao, R.X., and Melamed, R., 2003, Field demonstration of in situ immobilization of soil Pb using P amendments, Adv. Env. Res., 8, 93-102
  •  
  • 11. Chiou, C.T. and Kile, D.E., 1998, Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol., 32, 338-343
  •  
  • 12. Conder, J.M. and Lanno, R.P., 2000, Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida, Chemosphere, 41, 1659-1668
  •  
  • 13. Comans, R.N.J., 1987, Adsorption, desorption and isotopic exchange of cadmium on illite-evidence for complete reversibility, Wat. Res., 21, 1573-1576
  •  
  • 14. Cornellison, G., Rigterink, H., Ferdinandy M.M.A., and van Noort, P.C.M., 1998, Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation, Environ. Sci. Technol., 32, 966-970
  •  
  • 15. Dasappa, S.M. and Loehr, R.C., 1991, Toxicity reduction in contaminated soil bioremediation processes, Wat. Res., 25, 1121-1130
  •  
  • 16. Davis, B.N.K., 1971, Laboratory studies on the uptake of aldrin and dieldrin by earthworms, Soil Biol. Biochem., 3, 221-233
  •  
  • 17. Decker, G.C., Bruce, W.N., and Bigger, J.H., 1965, The accumulation and dissipation of residues resulting from the use of aldrin in soils, J. Econ. Entomol., 58, 266-271
  •  
  • 18. Dzombak, D.A. and Morel, F.M.M., 1990, Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley, New York
  •  
  • 19. Edwards, C.A., Beck, S.D., and Lichtenstein, E.P., 1957, Bioassay of aldrin and lindane in soil, J. Econ. Entomol., 50, 622-626
  •  
  • 20. Eick, M.J., Naprstek, B.R., and Brady, P.V., 2001, Kinetics of Ni(II) sorption and desorption on kaolinite: Residence time effects, Soil Sci., 166, 11-17
  •  
  • 21. Eick, M.J., Peak, J.D., Brady, P.V., and Pesek, J.D., 1999, Kinetics of lead adsorption/desorption on goethite: Residence time effect, Soil Sci., 164, 28-39
  •  
  • 22. Ford, R.G., Scheinost, A.C., Scheckel, K.G., and Sparks, D.L., 1999, The link between clay mineral weathering and the stabilization of Ni surface precipitates, Environ. Sci. Technol., 33, 3140-3144
  •  
  • 23. Ford, R.G., Scheinost, A.C., and Sparks, D.L., 2001, Frontiers in metal sorptin/precipitation mechanism on soil mineral surfaces, Adv. Agron., 74, 41-62
  •  
  • 24. Griest, W.H., Stewart, A.J., Tyndall, R.L., Caton, J.E., Ho, C.H., Ironside, K.S., Caldwell, W.M., and Tan, E., 1993, Chemical and toxicological testing of composted and explosives-contaminated soil, Environ. Toxicol. Chem., 12, 1105-1116
  •  
  • 25. Harper, M.P., Davidson, W., Zhang, H., and Tych, W., 1998, Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes, Geochim. Cosmochim. Acta, 62, 2757-2770
  •  
  • 26. Hatzinger, P.B., and Alexander, M., 1995. Effect of aging of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 29, 537-545
  •  
  • 27. Hettiarachchi, G.M., Pierzynski, G.M., and Ransom, M.D., 2000, In situ stabilization of soil lead using phosphorus and manganese oxide, Environ. Sci. Technol., 34, 4614-4619
  •  
  • 28. Huang, W.L., Yu. H., and Weber. W.J., 1998, Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments-1. A comparative analysis of experimental protocols, J. Contam. Hydrol., 31, 129-148
  •  
  • 29. Hulzebos, E.M., Adema, D.M.M., Dirven van Breemen, E.M.L., Henzen, L., van Dis, W.A., Herbold. H.A., Hoekstra, J.A., Baerselman, R., and van Gestel. C.A.M., 1993. Phytotoxicity studies with lettuce (Lactuca sativa) in soil and nutrient solution, Environ. Toxicol. Chem., 12, 1079-1094
  •  
  • 30. Kalucheva, I. and Paskaleva, K., 1967, Electron-microscope study of micropores in certain soil type (In Bulgarian), Pochvoznanie i Arokhimiya, 2, 3-16
  •  
  • 31. Kan, A.T., Fu., G., and Hunter, M.A., 1997, Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments, Environ. Sci. Technol., 31, 2176-2185
  •  
  • 32. Kan, A.T., Fu, G., Hunter, M.A., Chen, W., Ward, C.H., and Tomson, M.B., 1998, Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions, Environ. Sci. Technol., 32, 892-902
  •  
  • 33. Kottler, B.D. and Alexander, M., 2001, Relationship of properties of polycyclic aromatic hydrocarbons to sequestration in soil, Env. Poll., 113, 293-298
  •  
  • 34. Krauss, M. and Wilcke, W., 2001, Biomimetic Extraction of PAHs and PCBs from Soil with octadecyl-modified silica disks to predict their availability to earthworms, Environ. Sci. Technol., 35, 3931-3935
  •  
  • 35. Krauss, M., Wilcke, W., and Zech, W., 2000, Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban Soils, Environ Sci. Technol., 34, 4335-4340
  •  
  • 36. La Force, M.J., Hansel, C.M., and Fendorf, S., 2000, Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced palustrine emergent wetland, Environ. Sci. Technol., 34, 3937-3943
  •  
  • 37. Lei, L., Bagchi, R., Khodadoust, A.P., Suidan, M.T., and Tabak, H.H., 2006, Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions, J. Env. Eng., 132, 384-391
  •  
  • 38. Lei, L., Suidan, M.T., Khodadoust, A.P., and Tabak, H.H., 2004, Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption, Environ. Sci. Technol., 38, 1786-1793
  •  
  • 39. Li, A. and Liu, X., 2005, Combined effects of aging and cosolvents on sequestration of phenanthrene in soils, J. Env. Eng., 131, 1068-1072
  •  
  • 40. Linkov, I., Satterstrom, F.K., Kiker, G., Batchelor, C., Bridges, T., and Ferguson, E., 2006, From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications, Environ. Int., 32, 1072- 1093
  •  
  • 41. Linz, D.G. and Nakles, D.V. (editor) 1997. Environmentally Acceptable Endpoints in Soil. American Academy of Environmental Engineers, pp. 630
  •  
  • 42. Liste H. and Alexander, M., 2002, Butanol extraction to predict bioavailability of PAHs in soil, Chemosphere, 46, 1011-1017
  •  
  • 43. Lock, K. and Janssen, C.R., 2003, Influence of ageing on znc bioavailability in soils, Env. Poll., 126, 371-374
  •  
  • 44. Luan, T.G., Yu, K.S.H., Zhong, Y., Zhou, H.W., Lan, C.Y., and Tam, N.F.Y., 2006, Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments, Chemosphere, 65, 2289-2296
  •  
  • 45. Ma, Y.B. and Uren, N.C., 1998, Transformations of heavy metals added to added to soil-application of a new sequential extraction procedure, Geoderma, 84, 157-168
  •  
  • 46. Ma, Y., Lombi, E., Oliver, I.W., Nolan, A.L., and McLaughlin, M.J., 2006, Long-term aging of copper added to soils, Environ. Sci. Technol., 40, 6310-6317
  •  
  • 47. Macleod, C.J.A. and Semple, K.T., 2000, Influence of contact time on extractability and degradation of pyrene in soils, Environ. Sci. Technol., 34, 4952-4957
  •  
  • 48. Manilal, V.B. and Alexander, M., 1991. Factor affecting the microbial degradation of phenanthrene in soil, Appl. Microbiol. Biotechnol., 35, 401-405
  •  
  • 49. Martinez, C.E. and Mcbride, M.B., 2000, Aging of coprecipitated Cu in alumina changes in structural location, chemical form, and solubility, Geochim Cosmochim Acta, 64, 1729-1736
  •  
  • 50. Mattson, A.M., Kahrs, R.A., and Murphy, R.T., 1970, Quantitative determination of triazine herbicides in soils by chemical analysis, Residue Rev., 32, 371-390
  •  
  • 51. McCall, P.J. and Agin, P.L., 1985, Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxicol. Chem., 4, 37-44
  •  
  • 52. McCloskey, W.B. and Bayer. D.E., 1987, Thermodynamics of fluridone adsorption and desorption in three California soils, Soil Sci. Soc. Am. J., 51, 605-612
  •  
  • 53. McGowen, S.L., Basta, N.T., and Brown, G.O., 2000, Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil, J. Environ. Qual., 30, 493-500
  •  
  • 54. McGroddy, S.E., Farrington, J.W., and Gschwend. P.M., 1996, Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, Environ. Sci. Technol., 30, 172-177
  •  
  • 55. McLaren, R.G., Backes, C.A., Rate, A.W., and Swift, R.S., 1998, Cadmium and cobalt desorption knetics from soil clays: Effect of sorption period, Soil Sci. Soc. Am. J., 62, 332-337
  •  
  • 56. Mingelgrin, U. and Gerstl, Z., 1993, A unified approach to the interaction of small molecules with macrospecies. In: A.J. Beck, K.C. Jones, M.H.B. Hayes, and U. Mingelgrin, eds., Organic Substances in Soil and Water: Natural Constituents and their Influence on Contaminant Behaviour, p. 102-127. Royal Society of Chemistry, Cambridge, U.K
  •  
  • 57. Mossop, K.F. and Davidson, C.M., 2003, Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments, Anal. Chim. Acta, 478, 111-118
  •  
  • 58. Nachtegaal, M. and Sparks, D.L., 2003, Nickel sequestration in a kaolinite-humic acid complex, Environ. Sci. Technol., 37, 529-534
  •  
  • 59. Northcott, G.L. and Jones. K.C., 2001, Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration, Environ. Sci. Technol., 35, 1103-1110
  •  
  • 60. O'Reilly, S.E., Strawn, D.G., and Sparks, D.L., 2001, Residence time effect on arsenate adsorption/desorption mechanisms on goethite, Soil Sci. Soc. Am. J., 65, 67-77
  •  
  • 61. Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soils: Experimental design, Environ. Sci. Technol., 33, 1193-1199
  •  
  • 62. Opdyke, D.R. and Loehr, R.C., 1999, Statistical analysis of chemical release rates from soils, J. Soil Contam., 8, 541-558
  •  
  • 63. Oste, L.A., Dolfing, J., Ma, W.C., and Lexmond, T.M., 2001, Cadmium uptake by earthworms as related to the availability in the soil and the intestine, Environ. Toxicol. Chem., 20, 785-1791
  •  
  • 64. Parrish, Z.D., Banks, M.K., and Schwab, A.P., 2005, Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil, Env. Poll., 137, 187- 197
  •  
  • 65. Peijnenburg, W.J.G.M., Baerselman, R., de Groot, A.C., Jager, T., Posthuma, L., and Van Veen, R.P.M., 1999, Relating environmental availability to bioavailability soil-type-dependent metal accumulation in the oligochaete Eisenia andrei, Ecotoxicol. Environ. Safe., 44, 294-310
  •  
  • 66. Reid, B.J., Stokes, J.D., Jones, K.C., and Semple, K.T., 2000, HPCD extraction for the evaluation of PAH bioavailability, Environ. Sci. Technol., 34, 3174-3179
  •  
  • 67. Scheckel, K.G. and Sparks, D.l., 2001, Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces, Sol. Sci. Soc. Am. J., 65, 685-694
  •  
  • 68. Scheidegger, A.M. and Sparks, D.L., 1996, Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite, Chem. Geol., 132, 157-164
  •  
  • 69. Seaman, J.C., Arey, J.S., and Bertsch, P.M., 2001, Immobilization of nikel and other metals in contaminated sediments by hydroxyapatite addition, J. Environ. Qual., 30, 460-469
  •  
  • 70. Sparks, D.L., 2003, Environmental Soil Chemistry, Academic Press, 2nd ed., pp. 350
  •  
  • 71. Steinberg, S.M., Pignatello, J.J., and Sawhney. B.L., 1987, Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores, Environ. Sci. Technol., 21, 1201-1208
  •  
  • 72. Strawn, D.G. and Sparks, D.L., 2000, Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil, Soil Sci. Soc. Am. J., 64, 144-156
  •  
  • 73. Strawn, D.G., Scheidegger, A.M., and Sparks, D.L., 1998, Kinetics and mechanism of Pb(II) sorption and desorption at the aluminium oxide-water interface, Environ. Sci. Technol., 32, 2596-2601
  •  
  • 74. Stuer-Lauridsen, F., 2005, Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment, Env. Poll., 136, 503-524
  •  
  • 75. Sun, H.W. and Li, J.G., 2005, Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction and SFE, Water Air Soil Poll., 166, 353-365
  •  
  • 76. Symons, B.D. and Sims, R.C., 1998, Assessing detoxification of a complex hazardous waste using the microtox bioassay, Arch. Environ. Contam. Toxicol., 17, 497-505
  •  
  • 77. Technical Report R1. 1992, Feasibility study for the remediatino of surface contamination at an MGP site. Draft from consulting firm, September 29
  •  
  • 78. Technical Report R16a. 1994. operations report : (wood treating site). Consulting firm, April
  •  
  • 79. Technical Report R16b. 1992. Treatability evaluation to determine the feasibility of in-situ flushing at a wood preserving site. Laboratory Progress Report, Consulting firm, October
  •  
  • 80. Technical Report R25. 1993. Results of bench-scale biotreatability testing of petroleum hydrocarbons in soils at the petroleum products plant. Consulting firm, November
  •  
  • 81. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 884-851
  •  
  • 82. van der Wal, L., Jager, T., Fleuren, R.H.L.J., Barendregt, A., Sinnige, T.L., Van Gestel, C.A.M., and Hermens, J.L.M., 2004, Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil, Environ. Sci. Technol., 38, 4842-4848
  •  
  • 83. Verbruggen, E.M.J., Vaes, W.H., Parkerton, T.F., and Hermens, J.L.M., 2000, Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity, Environ. Sci. Technol., 34, 324-331
  •  
  • 84. Vinturella, A.E., Burgess, R.M., Coull, B.A., Thompson, K.M., and Shine, J.P., 2004, Use of passive samplers to mimic uptake of polycyclic aromatic hydrocarbons by benthic polychaetes, Environ. Sci. Technol., 38, 1154-1160
  •  
  • 85. Vig., K., Megharaj, M., Sethunathan, N., and Naidu, R., 2003, Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review, Adv. Environ. Res., 8, 121-135
  •  
  • 86. Wang, X., Yu, X., and Bartha, R., 1990, Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil, Environ. Sci. Technol., 24, 1086-1089
  •  
  • 87. Weber, J.B. and Weed, S.B., 1974, Effects of soil on the biological activity of pesticides, In: W.D. Guenzi, ed., Pesticides in Soil and Water, pp. 223-253. Soil Sci. Soc. Am., Madison, WI, USA
  •  
  • 88. Weber, W.J. and Huang. W.L., 1996, A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions, Environ. Sci. Technol., 30, 881-888
  •  
  • 89. Weissenfels, W.D., Klewer, H.J., and Langhoff, J., 1992, Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity, Appl. Microbiol. Biotechnol., 36, 689-696
  •  
  • 90. Wild, S.R. and Jones, K.C., 1993, Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge, Environ. Toxicol. Chem., 12, 5- 12
  •  
  • 91. Williamson, D.G., Loehr, R.C., and Kimura, Y., 1998, Release of chemicals from contaminated soils, J. Soil Contam., 7, 543-558
  •  
  • 92. Wood, W.W., Kraemer, T.F., and Hearn, P.P.Jr., 1990, Intragranular diffusion: an important mechanism influencing solute transport in clastic aquifers, Science, 247, 1569-1572
  •  
  • 93. Xing, B.S. and Pignatello. J.J., 1996, Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism, Environ. Toxicol. Chem., 15, 1282-1288
  •  
  • 94. You, J., Landrum, P.F., and Lydy, M.J., 2006, Comparison of chemical approaches for assessing bioavailability of sedimentassociated contaminants, Environ. Sci. Technol., 40, 6348-6353
  •  
  • 95. Zhang, H., Davison, W., Miller, S., and Tych, W., 1995, In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Acta, 59, 4181-4192
  •  

This Article

  • 2007; 12(1): 1-35

    Published on Feb 28, 2007