• Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation
  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho;
  • Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;
  • Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구
  • 정영욱;서승원;김민경;이종열;공성호;
  • 한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;
Abstract
A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

기존의 연구를 통해 Fenton's reagent(FR)를 이용하여 MTBE의 제거가 가능하며, 그러나 중성 pH영역에서는 철이온이 수산화물로 침전되어 반응성이 낮아지므로 FR만을 이용한 처리는 높은 수소이온 농도조건(pH $3{\sim}4$)이라는 제약으로 인해 직접적인 토양 및 지하수의 MTBE 오염처리에 있어 여러 가지 어려움이 있다. 이에 본 연구에서는 효과적인 처리를 위하여 NTA, oxalate, acetate 등의 chelating agent가 철이온과 반응하여 생성된 착화합물을 이용하는 modified Fenton reaction을 도입하여 중성 pH영역에서도 철이온이 안정화되어 높은 분해효율을 나타낼 수 있도록 하였다. MTBE의 분해경향은 chelating agent의 종류와 농도, 철이온 농도 그리고 pH 변화에 따라 크게 영향을 받는 것으로 나타났다. 가장 적합한 착화합물을 선택하기 위하여 총 6개의 chelating agent(citrate, oxalate, succinate, acetate, NTA, EDTA)를 실험한 결과, 처리효율과 chelating agent의 생분해도, 독성 등을 고려하여 최종 3가지 종(oxalate, acetate, NTA)이 선정되어 이후의 실험에서는 위의 3종만을 chelating agent로 이용하였다. 동일한 실험조건($H_2O_2$ : 5%, chelating agent : 6 mM, $Fe^{3+}$ : 2 mM, pH 7)하에서의 적용성 평가한 결과, Fe-NTA가 반응시작 30분만에 99.9%의 가장 높은 제거효율을 나타내었다. Oxalate의 경우, NTA보다는 그 분해효율이 낮으나 다른 chelating agent보다 상대적으로 높은 효율(24시간 후 최대효율 : 91.3%)을 보여주며, acetate를 이용한 경우도 본 실험에서 좋은 결과(24시간 후 최대효율 : 75.8%)를 나타내었다. 또한, 적정 철이온의 농도는 oxalate가 chelating agent로 이용되면 철이온 농도가 3 mM일때 가장 큰 분해효율을 보이며, acetate의 경우는 5 mM까지 농도가 증가함에 따라 그 효율도 조금씩 증가하는 것으로 나타났다. 이와같이 MTBE의 in-situ remediation을 위한 modified Fenton 공정은 철이온을 중성 pH영역에서 안정화시켜 실제 토양에 적용하였을 때, 높은 분해효율을 얻을 수 있으며, 경제적인 자체 생분해도가 높은 저분자 유기산을 이용하였으므로 생물학적 처리와 연계를 가능하게 해주는 장점을 나타낸다. 또한 토양 내 존재하는 철광석을 촉매로 이용할 경우, 주입되는 철이온 없이도 $H_2O_2$에서의 hydroxyl radical 생성을 증가 시킬 수 있으므로 보다 경제적이고 친환경적인 처리기법을 도출해 낼 수 있다.

Keywords: MTBE;modified Fenton process;hydrogen peroxide;hydroxyl radical;

Keywords: modified Fenton 반응;과산화수소;

References
  • 1. Anderson, M.A., 2000, Removal of MTBE and other organic contaminants from water by sorption to high silica zeolite, Environ. Sci. Technol., 34(4), 725-727
  •  
  • 2. Andreozzi, R., Caprio, V., Insola, A., and Marotta, R., 1999, Advanced oxidation processes (AOP's) for water purification and recovery, Catalysis Today, 53, 51-59
  •  
  • 3. Asim, B., Ray, Ariamalar Selvakumar., and Anthony, N. Tafuri., 2002, Treatment of MTBE-Contaminated Waters with Fenton's Reagent, Remediation Wiley, 81-93
  •  
  • 4. Bossmann, S.H., Oliveros, E., Gob, S., Siegwart, S., Dahlen, E. P., Payawan, L. Jr., Straub, M., Worner, M., and Braun, A.M., 1998, New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Photochemically Enhanced Fenton Reactions, J. Physical Chemistry A ACS, 102(28), 5542- 5550
  •  
  • 5. Burbano, A.A., Dionysiou, D.D., Suidan, M.T., and Richardson, T.L., 2005, Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent, Water Res., 39
  •  
  • 6. Graf, E., Mahoney, J.R., Bryant, R.G., and Eaton, J.W., 1984, Ironcatalyzed hydroxyl radical formation. Stringent requirement for free ion coordination site, J. Biol. Chem., 259, 3620-3624
  •  
  • 7. Haber, F. and Weiss, J.J., 1934, The catalyic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond. Ser., A A 147, 332
  •  
  • 8. Johnson, R., Pankow, J., Bender, D., Price, C., and Zogorski, J.S., 2000, To what extent will past releases contaminate community water supplier, Environ. Sci. Technol., 34(9), 210A
  •  
  • 9. Paulette, B.L. Chang, Thomas, and M. Young, 2000, Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment, Water Research, 34(8), 2233-2240
  •  
  • 10. Schirmer, M. and Barker, J.F., 1998, A study of long-term MTBE attenuation in the borden aquifer, Ontario, Canada. Groundwater Monitor. Res., 18, 113-122
  •  
  • 11. Siham, Rahhal. and Helen, W. Richter., 1988, Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine- N,N,N',N',N'-pentaacetate, Journal of the American Chemical Society ACS, 110, 3126-3133
  •  
  • 12. Squillace, P.A., Zogorski, J.S., and Wilber, W.G., 1996, Preliminary assessment of the occurrence and possible MTBE in groundwater in the United States, 1993-1994, Environ. Sci. Techol., 30, 1721-1730
  •  
  • 13. Squillace, P.A., Pankow, J.F., Korte, N.E., and Zogorski, J.S., 1997, Review of the environmental behavior and fate of methyl tert-butyl ether, Environ. Toxicol. Chem. 16, 1836
  •  
  • 14. Walling, C., Kurtz, M., and Schugar, H.T., 1970, Iron(III)-ethylenediaminetetraacetic acid-peroxide system, Inorg. Chem., 9, 931-937
  •  
  • 15. Winterbourn, C.C. and Sutton, H.C., 1986, Iron and xanthine oxidase catalyse formation of an oxidant species distinguishable from .OH : Comparison with the Haber-Weiss reaction, Arch. Biochem. Biophys., 244, 27-34
  •  
  • 16. Xu, X.R., Zhao, Z.Y., Li, X.Y., and Gu, J.D., 2004, Chemical oxdiative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent, Chemosphere, 55, 73-79
  •  

This Article

  • 2007; 12(2): 27-36

    Published on Apr 30, 2007