• The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils
  • Kim, Tae-Yeong;Kang, Dong-Hwan;Chung, Sang-Yong;Yang, Sung-Il;Lee, Min-Hee;
  • Department of Environmental Geosciences, Pukyong National University;Institute of Environmental Geosciences of Pukyong National University;Department of Environmental Geosciences, Pukyong National University;Department of Environmental Geosciences, Pukyong National University;Department of Environmental Geosciences, Pukyong National University;
  • 모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정
  • 김태영;강동환;정상용;양성일;이민희;
  • 부경대학교 환경지질과학과;부경대학교 지질환경연구소;부경대학교 환경지질과학과;부경대학교 환경지질과학과;부경대학교 환경지질과학과;
Abstract
Slug/bail tests were conducted in sand layer (sbt-1 well), silty sand layer (sbt-2 well), and mixed sand and silty sand layer (sbt-3 well). Hydraulic conductivity and specific storage coefficient were estimated through slug/bail tests. Pore volumes of groundwater level drawdown zone for bail test were estimated by using hydraulic conductivity and specific storage coefficient. KGS model was most suitable interpretation method of slug/bail tests. Average hydraulic conductivity for slug/bail tests were estimated to be $6.65{\times}10^{-5}$ m/sec in sbt-1 well, $6.33{\times}10^{-6}$ m/sec in sbt-2 well, and $3.72{\times}10^{-5}$ m/sec in sbt-3 well. Average specific storage coefficient for slug/bail tests were estimated to be 0.0225 in sbt-1 well, 0.0177 in sbt-2 well, and 0.0259 in sbt-3 well. Dimensionless time and dimensionless wellbore storage were estimated by use of transmissivity, storativity, test time, and specification of test wells. And, dimensionless drawdown were selected by parameter ${\alpha}\;and\;{\beta}$ parameter from Cooper et al. (1967). Radius of influence were estimated by estimated dimensionless time, dimensionless wellbore storage, and dimensionless drawdown. The average radius of influnce for slug/bail tests were estimated to be 1.377 m in sbt-1 well, 1.253 m in sbt-2 well, and 1.558 m in sbt-3 well. Pore volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,636cm^3$ in sbt-1 well, $71,561cm^3$ in sbt-2 well, and $100,418cm^3$ in sbt-3 well. Pore volume excepted well volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,410cm^3$ in sbt-1 well, $71,353cm^3$ in sbt-2 well, and $100,192cm^3$ in sbt-3 well.

본 연구에서는 모래층(sbt-1공), 실트질 모래층(sbt-2공) 및 모래와 실트질 모래의 혼합층(sbt-3공)에서 순간충격시험이 수행되었다. 그리고, 현장시험에 의해 산정된 수리전도도와 비저류계수를 이용하여 회수시험 시 지하수위 강하구역의 공극체적을 산정하였다. 순간충격시험의 해석은 KGS 모델이 가장 적합하였으며, 주입시험과 회수시험 시 평균수리전도도는 sbt-1공 $6.65{\times}10^{-5}$m/sec, sbt-2공 $6.33{\times}10^{-6}$m/sec, sbt-3공 $3.72{\times}10^{-5}$m/sec이며, 평균비저류계수는 sbt-1공 0.0225, sbt-2공 0.0177, sbt-3공 0.0259로 산정되었다. 투수량계수, 저류계수, 시험시간 및 시험공 제원을 이용하여 무차원 시간과 무차원 우물저류계수를 산정하였다. 그리고, Cooper 등(1967)이 제시한 변수 ${\alpha}$${\beta}$를 이용하여 무차원 수두강하량이 선정되었다. 산정된 무차원 시간, 무차원 우물저류계수 및 무차원 수두강하량을 이용하여 순간충격시험 시의 영향반경이 산정되었다. 주입시험과 회수시험 시 평균영향반경은 sbt-1공 1.377 m, sbt-2공 1.253 m, sbt-3공 1.558 m로 산정되었다. 그리고, 회수시험 시 더미 회수에 의한 지하수위 강하구역의 공극체적은 sbt-1공 $145,636cm^3$, sbt-2공 $71,561cm^3$, sbt-3공 $100,418cm^3$로 산정되었으며, 시험공의 부피를 제외한 지하수위 강하구의 공극체적은 sbt-1공 $145,410cm^3$, sbt-2공 $71,353cm^3$, sbt-3공 $100,192cm^3$이었다.

Keywords: Soils;Slug/bail test;Radius of influence;Groundwater level drawdown zone;Pore volume;

Keywords: 토양층;순간충격시험;영향반경;지하수위 강하구역;공극체적;

References
  • 1. 부산철도차량관리단, 2005, 부산철도차량관리단 지하수오염확산 모니터링 보고서, p. 115
  •  
  • 2. 이진용, 이강근, 정형재, 배광옥, 1999, 순간수위변화 및 양수시험을 통한 수리상수 산정의 문제점 분석, 지하수환경, 6(1), 14-22
  •  
  • 3. 한혜정, 최종근, 2000, 유한요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구, 지하수환경, 7(2), 89-96
  •  
  • 4. 함세영, 김문수, 성익환, 이병대, 김광성, 2001, 순간충격시험에 의한 화강암지역의 수리적 매개변수 산출, 지질공학, 11(1), 63-79
  •  
  • 5. Barker, J.A. and Black, J.H., 1983, Slug tests in fissured aquifers, Water Resour. Res., 19(6), 1558-1564
  •  
  • 6. Bouwer, H. and Rice, R.C., 1976, A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res., 12(3), 423-428
  •  
  • 7. Cooper, H.H., Bredehoeft, J.D., and Papadopulos, I.S., 1967, Response of a finite-diameter well to an instantaneous charge of water, Water Resour. Res., 3(1), 263-269
  •  
  • 8. Guyonnet, D., Mishra, S., and McCord, J., 1993, Evaluating the volume of porous medium investigated during slug tests, Ground Water, 31(4), 627-633
  •  
  • 9. Hyder Z., Butler Jr, J.J., McElwee, C.D., and Lui, W.Z., 1994, Slug tests in partially penetrating wells, Water Resour. Res., 30(11), 2945-2957
  •  
  • 10. Karasaki, K., Long, J.C.S., and Witherspoon, 1988, Analytical model of slug tests, Water Resour. Res., 24(1), 115-126
  •  
  • 11. Rovey, C.W. and Cherkauer D.S., 1995, Scale dependency of hydraulic conductivity measurements, Ground Water, 33(5), 769-780
  •  
  • 12. Sageev, A., Slug test analysis, 1986, Water Resour. Res., 22(8), 1323-1333
  •  
  • 13. Todd, D.K. and Mays, L.W., 2005, Groundwater Hydrology, Third edition, WILEY p. 353-255
  •  
  • 14. Ferris, J.G., Knowles, D.B., Brown, R.H., and Stallman, R.W., 1962, Theory of aquifer tests. US Geology Survey. Water-Supply Paper 1536-E
  •  

This Article

  • 2007; 12(4): 1-7

    Published on Aug 31, 2007