• Enhanced Transport and Risk of a Highly Nonpolar Pollutant in the Presence of LNAPL in Soil-groundwater System: In Case of p-xylene and benz[a]anthracene
  • Ryu, Hye-Rim;Han, Joon-Kyoung;Kim, Young-Jin;Nam, Kyoung-Phile;
  • Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;Department of Civil and Environmental Engineering, Seoul National University;
  • LNAPL에 의한 소수성 유기오염물질의 지하환경 내 이동성 변화가 위해성 증가에 미치는 영향: p-xylene과 benz[a]anthracene의 경우
  • 류혜림;한준경;김영진;남경필;
  • 서울대학교 공과대학 건설환경공학부;서울대학교 공과대학 건설환경공학부;서울대학교 공과대학 건설환경공학부;서울대학교 공과대학 건설환경공학부;
Abstract
Characterizing the risk posed by a mixture of chemicals is a challenging task due to the chemical interactions of individual components that may affect their physical behavior and hence alter their exposure to receptors. In this study, cell tests that represent subsurface environment were carried out using benz[a]anthracene (BaA) and p-xylene focusing on phasetransforming interaction to verify increased mobility and risk of highly sorbed pollutants in the presence of less sorbed, mobile liquid pollutants. A transport model was also developed to interpret results and to simulate the same process on a field scale. The experimental results showed that BaA had far greater mobility in the presence of p-xylene than in the absence of that. The main transport mechanisms in the vadose zone were by dissolution to p-xylene or water. The transport model utilizing Defined Time Steps (DTS) was developed and tested with the experimental results. The predicted and observed values showed similar tendency, but the more work is needed in the future study for more precise modeling. The field-scale simulation results showed that transport of BaA to groundwater table was significantly faster in the presence of NAPL, and the oral carcinogenic risk of BaA calculated with the concentration in groundwater was 15${\sim}$87 times larger when mixed with NAPL than when solely contaminated. Since transport rate of PAHs is very slow in the subsurface without NAPL and no degradation of PAHs was considered in this simulation during the transport, the increase of risk in the presence of NAPL is expected to be greater for the actual contaminated site.

물질 간 상호작용이 위해도에 많은 영향을 미칠 수 있다는 것은 널리 알려져 있지만 이를 위해성평가에 적용할 수 있는 방안은 아직 미미한 실정이다. 본 연구에서는 p-xylene이 토양 내에 존재할 때, 대수층으로의 이동성이 극히 제한적인 benz[a]anthracene (BaA)의 지하수로의 이동성 증가를 확인하고 그 증가된 위해도를 산정하기 위하여, 지하 환경을 모사한 셀을 제작하여 실험을 수행하였으며, 이를 해석하는 간단한 물질이동 모델을 개발하였다. 셀 실험 결과 BaA의 이동성은, BaA와 p-xylene이 혼합물질로 동시에 존재하는 경우에, BaA만으로 오염되어 있는 경우보다 월등히 높았다. 후자의 경우는 강우에 의한 이동이 주요 이동기작이었으며 그 정도는 아주 미미하였다. Defined Time Steps (DTS)을 이용하여 개발된 오염물질 이동모델은 두 물질 모두 실험결과와 유사한 경향을 보이며 변하는 것을 확인하였으나, 더욱 정확한 예측을 위하여 모델의 수정, 보완작업이 계속되고 있으며 이는 다음 연구의 주제가 될 것이다. 실험실 규모의 셀 실험의 경우 모세관대가 물질이동에 중요한 역할을 하기 때문에 실험실 규모의 시뮬레이션에서는 모세관대 모듈을 적용하는 것이 보다 적합한 것으로 나타났다. 현장규모 오염에서의 모델링 결과를 토대로 위해도를 산정하고 비교한 결과, 지하수 섭취를 통한 BaA의 발암위해도는 NAPL이 존재할 때, 존재하지 않을 때보다, 약 15${\sim}$87배 크게 계산되었다. NAPL이 존재하지 않는 경우 BaA의 지중 이동속도는 매우 느리며, 실제 오염현장의 경우 이동 과정에서 물질분해가 일어나므로 NAPL의 존재 여부에 따른 실제 위해도 차이는 더 크게 발생할 것으로 예상된다.

Keywords: Risk assessment;Exposure assessment;Chemical mixture;Polycyclic aromatic hydrocarbons (PAHs);Light Non-Aqueous Phase Liquid (LNAPL);Phase transformation;

Keywords: 위해성 평가;노출 평가;복합오염;다환방향족 탄화수소 (PAHs);상 변화;

References
  • 1. 기상청 기후자료팀, 2001, 평년값 자료: 1971-2000년 서울지역 년평년값 강수량 자료, 서울, 대한민국
  •  
  • 2. 한준경, 2007, LNAPL에 의한 benz[a]anthracene의 상변화가 benz[a]anthracene의 위해도에 미치는 영향. 서울대학교 대학원 지구환경시스템공학부 석사학위 논문
  •  
  • 3. Agency for Toxic Substances and Disease Registry, 1995, Toxicological Profile for Polycyclic Aromatic Hydrocarbons, US Department of Health and Human Services, Atlanta, GA, USA., p. 209-221
  •  
  • 4. ATSDR, see Agency for Toxic substances and Disease Registry
  •  
  • 5. Brown, D.G., Knightes, C.D., and Peters, C.A., 1999, Risk assessment for polycyclic aromatic hydrocarbon NAPLs using component fractions, Environ. Sci. Technol., 33(24), 4357-4363
  •  
  • 6. Hertzberg, R.C. and MacDonell, M.M., 2002, Synergy and other ineffective mixture risk definitions, Sci. Total Environ., 288, 31-42
  •  
  • 7. IARC, see International Agency for Research on Cancer.
  •  
  • 8. International Agency for Research on Cancer, 1998a, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 3. Certain Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds-Summary of Data Reported and Evaluation, World Health Organization, International Agency for Research on Cancer, Lyon, France
  •  
  • 9. International Agency for Research on Cancer, 1998b, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 32. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data-Summary of Data Reported and Evaluation, World Health Organization, International Agency for Research on Cancer, Lyon, France
  •  
  • 10. Jafvert, C.T., Lane, D., Lee, L.S., and Rao, P.S.C., 2006 Partitioning of mono- and poly-cyclic aromatic hydrocarbons in a river sediment adjacent to a former manufactured gas plant site, Chemosphere, 62(2), 315-321
  •  
  • 11. Knauss, K.G. and Copenhaver, S.A., 1995, The solubility of pxylene in water as a function of temperature and pressure and calculated thermodynamic quantities, Geochim. Cosmochim. Acta, 59(12), 2443-2448
  •  
  • 12. Potter, T.L. and Simmons, K.E., 1998, Total Petroleum Hydrocarbon Criteria Working Group Series Volume 2: Composition of Petroleum Mixtures, Amherst Scientific Publishers, MA, USA
  •  
  • 13. Ramaswami, A. and Luthy, R.G., 1997, Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems .1. Model development, Environ. Sci. Technol., 31(8), 2260-2267
  •  
  • 14. Russold, S., Schirmer, M., and Piepenbrink, M., 2006, Modeling the impact of a benzene source zone on the transport behavior of PAHs in groundwater, Environ. Sci. Technol., 40(11), 3565-3571
  •  
  • 15. Teuschler, L.K., 2006, Deciding which chemical mixtures risk assessment methods work best for what mixtures, Toxicol. Appl. Pharmacol., in press, Online ver. available, http://www.sciencedirect.com/science/journal/0041008X.
  •  
  • 16. US Environmental Protection Agency, 1991, Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions (OSWER Directive 9355.0-30), Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D. C. , USA
  •  
  • 17. US Environmental Protection Agency, 2000, Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures, Risk Assessment Forum, US Environmental Protection Agency, Washington, D. C., USA
  •  
  • 18. US Environmental Protection Agency, 2003, Framework for Cumulative Risk Assessment, Risk Assessment Forum, US Environmental Protection Agency, Washington, D. C., USA
  •  
  • 19. US Environmental Protection Agency, 2007, Updated Monthly, Integrated Risk Information System (IRIS), Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, OH, USA
  •  
  • 20. US EPA, see US Environmental Protection Agency
  •  

This Article

  • 2007; 12(4): 25-31

    Published on Aug 31, 2007