• Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I
  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho;
  • Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;Department of Chemical Engineering, Hanyang University;
  • 염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I)
  • 손석규;이종열;정재성;이홍균;공성호;
  • 한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;한양대학교 화학공학과;
Abstract
The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.

Advanced oxidation processes(AOPs)는 강력한 산화제인 hydroxyl radical(${\cdot}OH$)를 생성하여 오염물질을 산화시키는 기법이다. 본 연구에서는 DNAPL인 trichloroethylene(TCE)과 tetrachloroethylene(PCE)의 수리학적 특성을 고려하여 우수한 고도산화처리기법($UV/Fe^{3+}$-chelating agent/$H_2O_2$기법, $UV/H_2O_2$기법)의 적용성 평가를 실시하였다. TCE, PCE 처리에 있어 가장 높은 분해효율을 보인 기법은 $UV/H_2O_2$기법으로 pH 6의 중성조건에서 TCE의 경우 150분 만에 99.92%의 TCE 분해를 나타내었고($[H_2O_2]$ = 147 mM, UV dose = 17.4 kwh/L), PCE의 경우 반응 2시간에 99.99%가 분해되었다($[H_2O_2]$ = 29.4 mM, UV dose = 52.2 kwh/L). 또한, $UV/Fe^{3+}$-chelating agent/$H_2O_2$기법을 적용하였을 경우, TCE는 90분 만에 99.9% (UV dose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) PCE는 반응시간 6시간 만에 99.81% (UV dose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM)의 빠른 분해경향을 보였다. 이러한 결과는 기존의 고도산화처리기법 중 modified Fenton 반응에 UV를 적용함으로서 반응 중 $H_2O_2$의 재생산을 증가시킬 수 있음을 보여주고 있다. 또한, Fe(III) 이온의 Fe(II) 이온으로의 환원을 용이하게 하여 기존 Fenton 반응에 비해 처리시간의 단축 및 분해효율의 향상을 기대할 수 있을 것이다. 그리고, oxalate나 acetate같은 저분자 유기산 착제의 적용으로 pH의 안정성과 분해효율의 향상이 가능하고, 철이온 및 oxalate나 acetate와 같은 물질이 자연상에 존재함에 따라 보다 경제적이고 친환경적인 실용적 처리기법 도출이 가능할 것이다.

Keywords: $UV/Fe^{3+}$-chelating agent/$H_2O_2$ process$UV/H_2O_2$ process;modified Fenton reaction;TCE;PCE;

Keywords: $UV/Fe^{3+}$-chelating agent/$H_2O_2$기법$UV/H_2O_2$기법;modified Fenton반응;

References
  • 1. Amiri, A.S., Bolton, J.R., and Cater, S.R., 1997, Ferrioxalatemediated photodegradation of organic pollutants in contaminated water, Water Res., 31, 787-798
  •  
  • 2. Clegg, W., Powell, A.k., and Ware, M.J., 1984, Acta Crystallogr. C40, 1822
  •  
  • 3. Critten, J.C,. Hu, S., Hand, D.W., and Green, S.A., 1997, A kinetic model for $H_2O_2$/UV process in a completely mixed batch reactor, Water Res., 33, 2315-2328
  •  
  • 4. Esplugas, S., Gimenez, J., Contretas, S., Pascual, E., and Rodriguez, M., 2002, Comparison of different advanced oxidation processes for phenol degradation, Water Res., 36, 1034-1042
  •  
  • 5. Glaze, W.H., Kennke J.F., and Ferry, J.R., 1993, Chlorinated byproducts from the $TiO_2$-medicated photodegradation of trichloroethylene and tetrachloroethylene in water, Environ. Sci. Technol., 27, 177-184
  •  
  • 6. Hatchard, C.G. and Paker, C.A., 1956, A new sencitive chemi-cal actinometer: II. Potassium ferioxalate as a standard chemical actiometer, Proc. R. Soc. London A., 235, 518-536
  •  
  • 7. Hatchard, C.G. and Paker, C.A., 1956, A new sencitive chemical actinometer: II. Potassium ferioxalate as a standard chemical actiometer, Proc. R. Soc. London A., 235, 518-536
  •  
  • 8. A.L., Warberg, C.R., Atkinson, D.A., and Watts, R.J., 2000, Comparison of Mineral and soluble iron Fenton catalysts for the treatment of trichloroethylene, Water Research., 35, 977-984
  •  
  • 9. Hamazaki, S., Okada, S., Li, J., Toyokuni, S., and Midirikawa, O., 1989, Oxygen reduction and lipid peroxidation by iron chelates with special reference to feric nitrilotriacetate, A. Biochem. Biophy., 272, 10-17
  •  
  • 10. Hislop, K.A. and Bolton, R.J., 1999, The Photochemical Generation of Hydroxyl Radicals in the UV-vis/Ferrioxalate/$H_2O_2$ System, Environ. Sci. Technol., 33, 3119-3126
  •  
  • 11. Hoag, E.G.C.G., Chedda, P., Nadim, F., Bernard, A., Woody, and Doob, G.M., 2001, The Mechanism and applicability of in situ oxidation of trichloroethylene with Fenton' reagent, J. Hazard. Mater., B87, 171-186
  •  
  • 12. Huang, K.C., Hoag, G.E., Chheda, P., Woody, B.A., and Dobbs, G.M., 2001, Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study, J. Hazard. Mater., B87, 155-169
  •  
  • 13. Huston, P.L. and Pignatello, J.J., 1996, Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding their Mineralization by the Photo-Fenton Reaction, Environ. Sci. Technol., 30, 3457-3463
  •  
  • 14. Jeong, J. and Yoon, J., 2004, Dual roles of $CO^{2-}$for degrading synthetic organic chemicals in the photoferrioxalate system, Water research., 38, 3531-3540
  •  
  • 15. Lee, Y.H., Jeong, J.S., Lee, C.H., Kim, S.M., and Yoon, J.Y., 2003, Influence of various reaction parameters on 2,4-D removal in photoferrioxalate, Chemosphere., 51, 901-912
  •  
  • 16. Li, K., Stefen, M.I., and Crittenden, J.C., 2004, UV Photolysis Trichloroethylene Product Study and Kinetic Modeling, Environ. Sci. Technol., 38, 6685-6693
  •  
  • 17. Peyton, G.R., Bell, E.G., and Lefarre, M.H., 1995, Reductive destruction of water contaminants during with hydroxyl processes, Environ. Sci. Technol., 29, 1710-1712
  •  
  • 18. Pignatello, J.J., 1992, Dark and Photoassisted $Fe^{3+}$-catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide, Environ. Sci. Technol., 26, 944-951
  •  
  • 19. Salari, D., Daneshvar, N., Aghazadeh, F., and Khataee, A.R., 2005, Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl ter-butyl ether(MTBE) by UV/$H_2O_2$ process, J. Hazard. Mater., B125, 205-210
  •  
  • 20. Schrank, S.G., Jose, H.J., Moreira, R.F.P.M., and Schober, H.Fr., 2005, Applicability of Fenton and $H_2O_2$/UV reactions in the treatment of tannery waste water, Chemosphere, 60, 644-655
  •  
  • 21. Tiburtius, E.R.L., Patricio, P.Z., and Emmel, A., 2005, Treatment of Gasoline-contaminated waters by advanced oxidation processes, J. Hazard. Mater., B126, 86-90
  •  
  • 22. Watts, R.J., Foget, M.K., Kong, S.H., and Teel, A.L., 1999, Hydrogen peroxide decomposition in model subsurface systems, J. Hazard. Mater., 69, 229-243
  •  
  • 23. Watts, R.J., Bottenberg, B.C., Hass, T.F., Jensen, M.D., and Teel, A.L., 1999, Role of Reduction in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions, Environ. Sci. Technol., 33, 3432-3437
  •  
  • 24. Xu, X.R., Li, H.B., Wang, W.H., and Gu, J.D., 2004, Degradation of dyes in aqueous solutions by the Fenton process, Chemosphere., 57, 595-600
  •  
  • 25. Yan, Y.E. and Schwartz, F.E., 1999, Oxidation degradation and kinetics of chlorinated ethylene by potassium permanganate, J. Contam. Hydro., 37, 343-365
  •  
  • 26. Yeh, C.K.J., Wu, H.M., and Chen, T.C., 2003, Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems, J. Hazard. Mater., 96, 29-51
  •  
  • 27. Zuo, Y. and Hoign, J., 1994, Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters, Atmosp. Enviro., 28, 1231-1239
  •  
  • 28. Zuo, G.M., Cheng, Z.X., Xu, M., and Qiu, X.Q., 2003, Study on the gas-phase photolytic and photocatalytic oxidation of trichloroethylene, J. Photochem. Photobio., 1611, 51-56
  •  

This Article

  • 2007; 12(5): 105-114

    Published on Oct 31, 2007