• Dispersion Characteristics of Hazardous Elements for the Stream Sediments of Primary Channels in the Namhae-Hwngye area
  • Park, Yaung-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Hong, In-Hee;Lim, Sung-Tae;
  • Dept. of Resource Engineering, Chosun University;Dept. of Resource Engineering, Chosun University;Center for Scientific Instruments, Chosun University;Dept. of Resource Engineering, Chosun University;National Maritime Museum;
  • 남해-화개지역 1차 수계 하상퇴적토의 환경유해원소 분산특성
  • 박영석;박대우;김종균;홍인희;임성태;
  • 조선대학교 자원공학과;조선대학교 자원공학과;조선대학교 공동실험실습관;조선대학교 자원공학과;국립해양유물전시관;
Abstract
Dispersion characteristics and envirounmental impactes of the stream sediments were investigated and geochemical disaster in the Namhae-Hwagye area was predicted. Stream sediments having no possibility of contamination effect and representing drainage basins were collected. Major and hazardous elements concentrations were determined by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES have been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1'st and after that $HClO_4$, HF and HCl with $200^{\circ}C$ heating at 2'nd stage. Hazardous elements concentrations for the stream sediments in the Namhae area were Cu $5.66{\sim}168\;ppm$, Pb $18.0{\sim}40.7\;ppm$, Cr $21.6{\sim}147\;ppm$, Co $4.86{\sim}25.3\;ppm$. Hazardous elements concentrations for the stream sediments in the Hwagye area were Cu $16.4{\sim}41.2\;ppm$, Pb $26.5{\sim}37.5\;ppm$ Cr $79.6{\sim}153\;ppm$, Co $15.7{\sim}29.5\;ppm$. Concentration of Cu and Co in the stream sediments show a negative correlation with $SiO_2$ in all study area. According to E.I.(Enrichment Index) of stream sediments was not enriched in study area. And average E.I. was 0.35 (Namhae) and 0.56 (Hwagye) respectively. The stream sediments were enriched as in order of Pb > Cr > Co > Cu. And the average of Enrichment Factor (E.F.) was 0.46 to 2.84, respectively. E.F. concentration of Cu and Co were nearly similar enrichment characteristic but E.F. concentration of Cr were higher enrichnent characteristic in Namhae than Hwagye area. Pb was highly enriched in all study area but the tolerable level that used to investigate the enrichment degree of hazardous elements, was not exposed to harmful hazardous elements.

남해-화개지역 하상퇴적토 환경유해원소들의 분산특성 및 환경유해성을 알아보고, 지구화학적 재해에 대해 예견하고자 한다. 하상퇴적토는 오염의 우려가 없고, 집수분지를 대표할 수 있는 시료를 채취하였다. XRD, XRF, ICP-AES, NAA를 이용하여 주성분원소 및 환경유해원소를 분석하였다. 산분해법은 1차로 $HClO_4$와 HF를 혼합하여 $200^{\circ}C$에서 분해시킨 후,2차로 $HClO_4$, HF, HCl를 혼합한 후 $200^{\circ}C$에서 분해시켜 이를 1% $HNO_3$ 용액으로 만들었다. 남해지역 환경유해원소의 함량은 Cu $5.66{\sim}168\;ppm$, Pb $18.0{\sim}40.7\;ppm$, Cr $21.6{\sim}147\;ppm$, Co $4.86{\sim}25.3\;ppm$ 범위이고, 화개지역에서는 Cu $16.4{\sim}41.2\;ppm$, Pb $26.5{\sim}37.5\;ppm$, Cr $79.6{\sim}153\;ppm$, Co $15.7{\sim}29.5\;ppm$ 범위를 보였다. 상관 분석에서는 하상퇴적토의 $SiO_2$ 함량이 높아질수록 구리(Cu)와 코발트(Co)의 함량이 감소하는 특징을 보였다. 연구지역의 E.I.는 비부화 되어 있으며, 평균값은 남해지역 0.35와 화개지역 0.56이였다. 조사대상 하상퇴적토들은 납 > 크롬 > 코발트 > 구리 순으로 부화되어 있으며, E.F.의 평균값은 $0.46{\sim}2.84$이다. E.F값은 구리와 코발트에서 거의 비슷한 부화특성을 보이나, 크롬에서는 남해지역보다 화개지역에서 보다 큰 부화특성을 보인다. 납은 연구지역 모두에서 상당히 부화되어 있었지만, 토양 및 퇴적물의 환경오염 허용 한계치(tolerable level)을 이용하여 살펴본 결과에서는 환경유해원소의 오염에 특별히 노출되지 않는 것으로 판단된다.

Keywords: Stream sediments;Hazardous elements;Dispersion;E.I.;E.F.;

Keywords: 하상퇴적토;환경유해원소;분산;

References
  • 1. 박영석,김종균,한민수,김용준,장우석,신성천,2002,장홍지역 1차수계 하상퇴적물의 지질집단별 지구화학적 특성과 하천수 에 대한 연구,자원환경지질,35, 509-521
  •  
  • 2. 박영석,장우석,김종균,2003,구례지역 하상퇴적물의 지질집단 별 자연배경치에 대한 연구,자원환경지질, 36, 275-284
  •  
  • 3. 성학제,음철헌,우형주, 김영석, 양문열,손용오,송덕영,정경호, 송석희,박진태,전치완,최병인,김상연, 이정화,윤우열,심상권, 정강섭,김태삼,김건한, 양명권,조고교,길대섭,김 학진,이길용,김준곤,윤윤열,천상기,주승환,김낙배,김덕경,최한우,조수영, 1995,지질 시료 분석체계 및 정도관리시스댐 개발(I), 한국지원연구소, KR-95(T)-10, 419
  •  
  • 4. 손치무, 이상만,원종관,장기홍, 김영주,1964,한국지질도 화개 도폭,경상남도
  •  
  • 5. 염승준, 이평구,강민주,신성천,유연희,2004,주암댐 집수유역 내 하상퇴적물의 중금속 오염현황 및 거동특성,자원환경지질, 37,311-324
  •  
  • 6. 이승구, 양동윤,홍세선,곽재호,오근창,2003,희토류원소를 이 용한 순창지역 섬진강 수계내 하상퇴적물의 기원지 연구,지질학 회지,39,81-97
  •  
  • 7. 이현구,조애란,이찬희,1999, 입도분포에 따른하상퇴적물의 지구화학적 분산 및 부화,자원환경지질학회지,32,247-260
  •  
  • 8. 장기홍, 이영길,김규한,1989,한국지질도 남해서상도폭 지질보고서, 한국동력자원연구소
  •  
  • 9. 전효택,1995,토양에서의 잠재적 독성 금속원소들의 분산과 오염평가, 대한지질학회 대한자원환경지질학회 공동학술강연회 발표논문집 , 8-31
  •  
  • 10. 황춘길,김경웅,이현구,1999,지구통계학적인 방법에 의한 충남 탄전하상퇴적물의 미량원소 오염조사,자원환경지질학회지,32, 63-72
  •  
  • 11. ATSDR(Agency for Toxic Substances and Disease Registry), 1988~1995, Pubiic Health Statement: http://atsdr1.atsdr.cdc.gov: 8080/ToxProfiles., ToxFAQs: http://atsdrl.atsdr
  •  
  • 12. cdc.gov:8080IToxF AQs/
  •  
  • 13. Brooks, R.R., 1983, Biological methods ofprespecting for minerals, John Wiley and Sons Inc., p. 321
  •  
  • 14. Bruladn, K.W., Bertine, K., Koiole, M., and Goldberg, E.D., 1974, History of metal pollution in Southern Califormia coastal zone, Environ. Sci. Tech, 8, 425-432
  •  
  • 15. Damley, A.G, Bjorklund, A., Bolviken, B., Gustavsson, N., Koval, P.V., Plant, K.A., Steenfelt, A., Tauchid, M., Xie Xuejing, Garrett, R.G, and Hall, GE.M., 1995, A Global Geochemical Database for Environmental and Resource ManagementRecommendations for International Geochemical Mapping, Final Report of IGCP Project 259, Earth
  •  
  • 16. Davis, B.D. and Ballinger, R.C., 1990, Heavy metal soils in north Somerest, England, with special reference to contamination from base metal mining in the Mendips, Environ Geochem Health, 12,291-300
  •  
  • 17. FOREGS(Forum of Euroupean Geological Surveys), FOREGS Geochemical mapping field manual, Geological Survey of Finland Guide 47, p. 1-36
  •  
  • 18. GNHPR(Group for Natural Hazard Prevention Research), 2001, Korea Institute of Geoscience and Mineral Research
  •  
  • 19. Kabata-Pendias, A. and Pendias, H., 1984, Trace elements in soil and plants, CRC Press INC, p. 315
  •  
  • 20. Levinson, A.A, 1974, Introduction to Exploration Geochemistry, Applied Publishing Ltd., Maywood, p. 614
  •  
  • 21. Porter, E.L., Kent, R.A., Andersen, D.E., Keenleyside, K.A, Milne, D., Cureton, P., Smith, S.L., Drouillard, K.G., and MacDonald, D.D., 1995, Development of proposed Canadian environment quality guidelines for cadmium, J. Geochem. Expl., 52, 205-219
  •  
  • 22. Rose, A.W., Hawkes, H.E., and Webb, J.S., 1979, Geochemistry in mineral exploration, 2nd ed., Academic Press, p. 657
  •  
  • 23. Taylor, S.R., 1964, Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Acta, 28, 1273-1285
  •  
  • 24. Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: Its Composition and Envolution, Blackwell Scientific Publ, Oxford, England, p. 312
  •  
  • 25. Taylor, S.R. and McLennan, S.M., 1995, The geochemical evo- lution of the continental crust. Rev. Geophys, 33, 241-265.
  •  
  • 26. Thornton, I., 1983, Applied Environmental Geochemistry, Academic Press, p. 501
  •  
  • 27. Turekian, K.K. and Wedephol, K.H., 1961, Distribution of the elements in some major units of the Earth's crust. Geol. Soc.America Bull, 72,175-192
  •  
  • 28. UNESCO, 1990, Geological Map of the World.(Scale 1:25,000,000: edited by O.Dottin.) Commission for the geological Map of the World, United Nations Educational, Scientific and Cultural Organization, Paris
  •  

This Article

  • 2007; 12(6): 107-117

    Published on Dec 31, 2007