• Process Evaluation of Soil Washing Including Surfactant Recovery by Mathematical Simulation
  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon;
  • School of Environmental Science and Engineering, POSTECH;Department of Chemical Engineering, Hanbat National University;School of Environmental Science and Engineering/Department of Chemical Engineering, POSTECH;
  • 계면활성제 재사용을 포함한 토양 세척 공정의 전산모사 평가
  • 안치규;우승한;박종문;
  • 포항공과대학교 환경공학부;국립한밭대학교 화학공학과;포항공과대학교 화학공학과/환경공학부;
Abstract
A surfactant recovery and reuse process by selective adsorption with activated carbon was proposed to reduce surfactant cost in a soil washing process. Mathematical model simulation was performed for the whole process, which consists of soil washing, soil recovery, and soil re-washing. The optimal range of surfactant dosage was $6{\sim}10$-fold critical micelle concentration in soil. The efficiency of surfactant reuse process was decreased with increasing the dosage of activated carbon. Effectiveness factor for activated carbon significantly altered the efficiency of the reuse process unlike effectiveness factor for soil. Total requirement of surfactant was reduced to 20-30% with the reuse process compared to the conventional soil washing process. The contamination of wastewater after soil washing was reduced with the reuse process. This mathematical model can be used to estimate performance of the whole process of soil washing including surfactant recovery and to obtain optimal ranges of operating conditions without extra labor-intensive experimental works.

오염 토양 세척 공정에서의 계면활성제 비용을 줄이기 위해 활성탄을 이용한 선택적 흡착을 통해 계면활성제의 회수와 재이용 공정을 제안하였다. 본 연구에서는 토양 세척 공정, 계면활성제 회수 공정, 계면활성제 재이용에 의한 토양 재세척 공정으로 구성된 전체 공정에 대한 전산모사를 수행하여 운전변수에 대한 영향을 분석하였다. 계면활성제 첨가량은 미셀 생성 농도의 6-10배 정도가 최적이었으며, 활성탄 첨가량이 너무 많을 경우 계면활성제 재이용 효율이 감소하는 결과를 얻었다. 토양 흡착 효율 인자는 세척 공정에 크게 영향을 미치지 않는 반면, 활성탄 흡착 효율 인자는 회수 공정에 큰 영향을 미칠 수 있었다. 계면활성제 회수 및 재이용 공정을 적용할 경우 기존 세척 공정에 비해 계면활성제 요구량을 20-30% 수준으로 줄일 수 있을 것으로 보이며 발생하는 폐수에서의 오염도도 크게 줄일 수 있을 것으로 기대된다. 본 연구에서 개발된 모델을 통해 실제 복잡한 실험 이전 단계에서 전체 공정의 성능을 예측할 수 있으며 다양한 운전조건을 모사하여 최적의 운전조건을 도출하기 위한 기본적인 자료로 활용될 수 있을 것으로 판단된다.

Keywords: Activated carbons;Modeling;Soil washing;Surfactant reuse;

Keywords: 활성탄;모델링;토양 세척;계면활성제 재사용;

References
  • 1. 안치규, 김영미, 우승한, 박종문, 2006a, 활성탄을 이용한 Triton X-100 용액에서의 phenanthrene의 선택적 흡착에 관한 연구, 한국지하수토양환경, 11(2), 13-21
  •  
  • 2. 안치규, 김영미, 우승한, 박종문, 2006b, 토양세척 공정에서 활성탄을 이용한 계면활성제 재사용 모델 개발, 한국지하수토양환경, 11(2), 1-12
  •  
  • 3. An, Y.J., 2001, Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuse, Environ. Prog., 20(4), 240-246
  •  
  • 4. Anderson, W.C., 1993, Innovative site remediation technology: Soil washing/Soil flushing, American Academy of Environmental Engineering, Annapolis, MD
  •  
  • 5. Ang, C.C. and Abdul, A.S., 1994, Evaluation of an ultrafiltration method for surfactant recovery and reuse during in situ washing of contaminated sites: Laboratory and field studies, Ground Water Monit. R., 14, 160-171
  •  
  • 6. Cerniglia, C.E., 1992, Bioremediation of polycyclic aromatic hydrocarbons, Biodegradation, 3, 351-368
  •  
  • 7. Deshpande, S., Shiau, B.J., Wade, D., Sabatini, D.A., and Harvell, J.H., 1999, Surfactant selection for enhancing ex situ soil washing, Water Res., 33(2), 351-360
  •  
  • 8. Edwards, D.A., Liu, Z., and Luthy, R.G., 1994, Surfactant solubilization of organic compounds in soil/aqueous systems, J. Environ. Eng., 120, 5-22
  •  
  • 9. Edwards, D.A., Luthy, R.G., and Liu, Z., 1991, Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, Environ. Sci. Technol., 25(1), 127-133
  •  
  • 10. Foth, H.D., 1990, Soil Physical Properties, In Fundamentals of Soil Science. 8th Eds. John Wiley & Sons, Inc., New York, p. 69-96
  •  
  • 11. Gonzlez-Garca, C.M., Gonzlez-Martn, M.L., Gmez-Serrano, V., Bruque, J.M., and Labajos-Broncano, L., 2001, Analysis of the adsorption isotherms of a non-ionic surfactant from aqueous solution onto activated carbons, Carbon, 39, 849-855
  •  
  • 12. Jafvert, C.T., 1996, Report: Surfactant/Cosolvent. Ground-Water Remediation Technologies Analysis Center, Document TE-96- 026
  •  
  • 13. Levitz, P.E., 2002, Adsorption or non ionic surfactants at the solid/water interface, Colloid. Surface A., 205, 31-38
  •  
  • 14. Lipe, K.M., Sabatini, D.A., Hasegawa, M.A., and Harwell, J.H., 1996, Micellar-enhanced ultrafiltration and air stripping for surfactant- contaminant separation and surfactant reuse, Ground Water Monit. R., 16(1), 85-92
  •  
  • 15. Liu, Z., Edwards, D.A., and Luthy, R.G., 1992, Sorption of nonionic surfactant onto soil, Water Res., 26, 1337-1345
  •  
  • 16. Lowe, D.F., Oubre, C.L., and Ward, C.H., 2000, Reuse of Surfactants and Cosolvents for NAPL Remediation, Lewis Publishers
  •  
  • 17. Mulligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, Surfactantenhanced remediation of contaminated soil: a review, Engineering Geology, 60, 371-380
  •  
  • 18. Riser-Roberts, E., 1998, Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, Lewis Publishers
  •  
  • 19. Stigter, D., Williams, R.J., and Mysels, K.J., 1955, Micellar self diffusion of sodium lauryl sulfate, J. Phys. Chem., 59, 330-335
  •  
  • 20. USEPA, 1991, Guide for conducting treatability studies under CERCLA: Soil washing Interim Guidance, EPA/540/2-91/020A
  •  
  • 21. Vanjara, A.K. and Dixit, S.G., 1996, Recovery of cationic surfactant by using precipitation method, Sep. Technol., 6(1) 91-93
  •  
  • 22. Woo, S.H., Lee, M.W., and Park, J.M., 2004, Biodegradation of phenanthrene in soil-slurry systems with different mass regime and soil content, J. Biotechnol., 130(3), 235-250
  •  
  • 23. Zheng, Z. and Obbard, J.P., 2002, Evaluation of an elevated nonionic surfactant critical micelle concentration in a soil/aqueous system, Water Res., 36, 2667-2672
  •  

This Article

  • 2008; 13(1): 32-42

    Published on Feb 29, 2008