• Phenanthrene Uptake by Surfactant Sorbed on Activated Carbon
  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon;
  • School of Environmental Science and Engineering/Advanced Environmental Biotechnology Research Center, POSTECH;Department of Chemical Engineering, Hanbat National University;School of Environmental Science and Engineering/Department of Chemical Engineering/Advanced Environmental Biotechnology Research Center, POSTECH;
  • 활성탄에 흡착된 계면활성제에 의한 Phenanthrene 흡착
  • 안치규;우승한;박종문;
  • 포항공과대학교 환경공학부/차세대바이오환경기술연구센터;국립한밭대학교 화학공학과;포항공과대학교 화학공학과/환경공학부/차세대환경기술연구센터;
Abstract
Phenanthrene uptake by surfactant sorbed on activated carbon was investigated to recycle of surfactant in washed solution for contaminated soil. The partitioning of phenanthrene to the activated carbon coating with Triton X-100 as a surfactant was also evaluated by a mathematical model. Phenanthrene-contaminated soil (200 mg/kg) was washed in 10 g/L of surfactant solution. Washed phenanthrene in solution was separated by various particle loadings of granular activated carbon through a mode of selective adsorption. Removal of phenanthrene was 99.3%, and surfactant recovery was 88.9% by 2.5 g/L of granular activated carbon, respectively. Phenanthrene uptake by activated carbon was greater than that of phenanthrene calculated by a standard model for a system with one partitioning component. This is accounted for enhanced surface solubilization by hemi-micelles adsorbed onto granular activated carbon. The effectiveness factor is greater than 1 and molar ratio of solubilization to sorbed surfactant is higher than that of liquid surfactant. Results suggest that separation of contaminants and surfactants by activated carbon through washing process in soil is much effective than that of calculated in a theoretical model.

계면활성제를 사용하는 토양 세척공정에서 발생하는 세척수에서 계면활성제를 재사용하고자 활성탄 흡착 공정을 적용하였으며 이때 오염물질의 흡착분배를 평가하기 위해 수학적 모델을 적용하여 해석하였다. 오염물질로는 phenanthrene을 계면활성제로는 Triton X-100을 사용하였다. Phenanthrene을 200 mg/kg으로 오염시킨 토양을 10 g/L의 계면활성제 용액으로 세척을 수행하였으며 이 세척액을 대상으로 다양한 농도의 입상 활성탄을 첨가하여 선택적 흡착을 수행하였다. 활성탄의 주입량이 2.5 g/L에서 99.3%의 phenanthrene이 흡착 제거되었으며 이 때 액상에 존재하여 재이용 가능한 계면활성제의 회수율은 88.9%였다. 활성탄 흡착 평형에서 오염물질의 흡착량은 단일 성분 표준모델에서 예상할 수 있는 양보다 훨씬 많은 양이 선택적으로 흡착되었으며 이는 활성탄에 흡착된 계면활성제 미셀에 의한 표면 용해 현상에 의한 것으로 해석할 수 있었다. 이러한 현상으로 인해 흡착 계면활성제의 흡착 효율 인자는 1보다 매우 큰 값을 나타내었고 흡착 몰 당 오염물질 용해 비가 액상 값보다 훨씬 높은 결과를 나타내었다. 이러한 결과는 활성탄 흡착에 의한 계면활성제 재이용 시 이론적 분배보다 더 우수한 효율로 오염물질의 선택적 분리가 가능함을 제시한다고 할 수 있다.

Keywords: Activated carbon;Modeling;Soil washing;Surfactant recycle;Surface solubilization;

Keywords: 활성탄;모델링;토양 세척;계면활성제 재사용;표면용해;

References
  • 1. 안치규, 김영미, 우승한, 박종문, 2006a, 활성탄을 이용한 Triton X-100 용액에서의 phenanthrene의 선택적 흡착에 관한 연구, 지하수토양환경, 11(2), 13-21
  •  
  • 2. 안치규, 김영미, 우승한, 박종문, 2006b, 토양세척 공정에서 활성탄을 이용한 계면활성제 재사용 모델 개발, 지하수토양환경, 11(2), 1-12
  •  
  • 3. 우승한, 박종문, 2003, 오염토양 세척공정에서 모델링을 통한 최적 계면활성제의 선별, 지하수토양환경, 8(3), 61-73
  •  
  • 4. Ahn, C.K., Kim, Y.M., Woo, S.H., and Park, J.M., 2007, Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon, Chemosphere, 69, 1681-1688
  •  
  • 5. An, Y.J., 2001, Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuse, Environ. Prog., 20(4), 240-246
  •  
  • 6. Anderson, W.C., 1993, Innovative site remediation technology: Soil washing/Soil flushing, American Academy of Environmental Engineering, Annapolis, MD
  •  
  • 7. Ang, C.C. and Abdul, A.S., 1994, Evaluation of an ultrafiltration method for surfactant recovery and reuse during in situ washing of contaminated sites: Laboratory and field studies, Ground Water Monit. R., 14, 160-171
  •  
  • 8. Chu, W., Chan, K.H., Kwan, C.Y., and Jafvert, C.T., 2005, Acceleration and quenching of the photolysis of PCB in the presence of surfactant and humic materials, Environ. Sci. Technol., 39(23), 9211-9216
  •  
  • 9. Deshpande, S., Shiau, B.J., Wade, D., Sabatini, D.A., and Harvell, J.H., 1999, Surfactant selection for enhancing ex situ soil washing, Water Res., 33(2), 351-360
  •  
  • 10. Edwards, D.A., Liu, Z., and Luthy, R.G., 1994, Surfactant solubilization of organic compounds in soil/aqueous systems, J. Environ. Eng., 120, 5-22
  •  
  • 11. Edwards, D.A., Luthy, R.G., and Liu, Z., 1991, Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions, Environ. Sci. Technol., 25(1), 127-133
  •  
  • 12. Foth, H.D., 1990, Soil Physical Properties, In Fundamentals of Soil Science. 8th Eds. John Wiley & Sons, Inc., New York, p. 69-96
  •  
  • 13. Johnson, W.P. and Amy, G.L., 1995, Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments, Environ. Sci. Technol., 29, 807-817
  •  
  • 14. Levitz, P.E., 2002, Adsorption or non ionic surfactants at the solid/water interface, Colloid. Surface A., 205, 31-38
  •  
  • 15. Lipe, K.M., Sabatini, D.A., Hasegawa, M.A., and Harwell, J.H., 1996, Micellar-enhanced ultrafiltration and air stripping for surfactant- contaminant separation and surfactant reuse, Ground Water Monit. R., 16(1), 85-92
  •  
  • 16. Lowe, D.F., Oubre, C.L., and Ward, C.H., 2000, Reuse of Surfactants and Cosolvents for NAPL Remediation, Lewis Publishers
  •  
  • 17. Matsui, Y., Fukuda, Y., Inoue, T., and Matsushita, T., 2003, Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption, Water Res., 37, 4413-4424
  •  
  • 18. Mulligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, Surfactantenhanced remediation of contaminated soil: a review, Engineering Geology, 60, 371-380
  •  
  • 19. Newcombe, G., Drikas, M., and Hayes, R., 1997, Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-Methylisoborneol, Water Res., 31(5), 1065-1073
  •  
  • 20. Riser-Roberts, Eve, 1998, Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes, Lewis Publishers
  •  
  • 21. Robson, R.J. and Dennls, E.A., 1977, The size, shape, and hydration of nonionic surfactant micelles. Triton X-100, J. Phys. Chem., 81(11), 1075-1078
  •  
  • 22. Sander, L.C. and Wise, S.A., 1997, Polycyclic Aromatic hydrocarbon structure index. NIST special publication 922, Gaithersburg
  •  
  • 23. Sellers, K., 1999, Fundamentals of Hazardous Waste Site Remediation, Lewis Publishers
  •  
  • 24. Stigter, D., Williams, R.J., and Mysels, K.J., 1955, Micellar self diffusion of sodium lauryl sulfate, J. Phys. Chem., 59, 330-335
  •  
  • 25. USEPA., 1991, Guide for conducting treatability studies under CERCLA: Soil washing Interim Guidance, EPA/540/2-91/020A
  •  
  • 26. Vanjara, A.K. and Dixit, S.G., 1996, Recovery of cationic surfactant by using precipitation method, Sep. Technol., 6(1), 91-93
  •  
  • 27. Volkering, F., Breure, A.M., and Rulkens, W.H., 1998, Microbilogical aspects of surfactant use for biological soil remediation, Biodegradation, 8, 401-417
  •  
  • 28. Zhu, B-Y., Zhao, X., and Gu, T., 1988, Surface solubilization, J. Chem. Soc. Faraday Trans., 84(11), 3951-3960
  •  

This Article

  • 2008; 13(2): 1-11

    Published on Apr 30, 2008