• Sorption and Desorption Characteristics of Atrazine in Soils
  • Lee, Youn-Goog;Lee, Ju-Ry;Chung, Seon-Yong;Park, Jeong-Hun;
  • Gwangju Metropolitan Institute of Health and Environment;Dept. of Environmental Engineering, Chonnam National University;Dept. of Environmental Engineering, Chonnam National University;Dept. of Environmental Engineering, Chonnam National University;
  • 토양에 따른 atrazine의 흡.탈착 특성
  • 이윤국;이주리;정선용;박정훈;
  • 광주광역시보건환경연구원;전남대학교 환경공학과;전남대학교 환경공학과;전남대학교 환경공학과;
Abstract
Sorption and desorption processes play an important role in the transport and fate of organic contaminants in subsurface system. In this study, sorption and desorption characteristics of atrazine in 7 soils selected at the Gwangju area were investigated. Soil organic carbon contents ranged from 0.42 to 2.82%. Sorption and desorption experiments were performed in batch slurries. Sorption distribution coefficient ($K_d$) of atrazine were ranged from 0.48 to 3.26 l/kg and $K_d$ value increased with increasing organic carbon contents except of Kyongbang and Youngdong soils. Single desorption data were analyzed by the three-site desorption model including equilibrium, non-equilibrium and non-desorbable site. Non-desorbable site fractions of atrazine in all soils were enumerated and non-desorbable atrazine was observed in seriesdilution desorption experiment. Sorption/desorption hysteresis was also observed in the series-dilution desorption experiment.

오염물질이 토양에 흡착 또는 탈착하는 성질은 지하계에서 오염물질의 이동과 거동에 큰영향을 미친다. 아트라진을 대상으로 광주지역 7가지 토양을 이용하여 흡착 및 탈착특성을 조사하였다. 토양의 유기탄소함량 (organic carbon content)은 $0.42{\sim}2.82%$의 범위였으며, 아트라진의 토양분배계수 ($K_d$)는 $0.48{\sim}3.26\;l/kg$의 범위였다. 경방 토양과 용동토양을 제외한 나머지 토양들은 유기탄소함량이 증가함에 따라 $K_d$ 값은 증가하였다. Three site desortpion model을 이용하여 평형 탈착분율, 비평형 탈착분율, 비탈착 분율 그리고 탈착속도계수를 구하였다. 실험한 모든 토양에서 아트라진의 비탈착 분율이 산출되었고, 다단탈착 실험에서도 탈착되지 않는 아트라진이 토양에 존재하였다. 다단 탈착 실험에서 흡착 등온선과 탈착 등온선이 일치하지 않는 이력현상이 나타났다.

Keywords: Atrazine;Sorption;Desorption;Organic carbon content;

Keywords: 아트라진;흡착;탈착;유기탄소함량;

References
  • 1. 나영, 이성백, 2001, 갯벌의 물리적 특성과 중금속 흡착에 관한 연구, 한국토양환경학회지, 5(3), 25-33
  •  
  • 2. 남경필, 김재영, 2002, 생물학적 이용성과 Aging이 오염토양의 정화수준 결정에 미치는 영향, 대한환경공학회지, 24(11), 1975-2000
  •  
  • 3. 라덕관, 김영규, 2001, 토양중 Pendimethalin의 흡착 및 이동특성, 한국토양환경학회지, 5(3), 17-23
  •  
  • 4. 라덕관, 박상숙, 정재성, 김영규, 오태선, 2000, 토양내 제초제의 흡착.탈착 특성, 대한환경공학회, 22(6). 1045-1053
  •  
  • 5. 이명석, 조윤석, 오계헌, 1999, TNT-분해세균인 Stenotrophomonas maltophilia에 의한 s-Triazine계 제초제인 Atrazine의 미생물학적 분해, 순천향자연과학연구논문집, 5(2), 295-300
  •  
  • 6. 이윤국, 김해영, 김만, 박정훈. 2007, 토양에 따른 나프탈렌의 흡. 탈착 특성, 한국폐기물학회지, 24(3), 251-258
  •  
  • 7. 정현정, 도원홍, 이민희, 옥곤, 2004, 토양특성에 따른 benzene, TCE, 1,2-dichlorobenzene, lindane의 흡착특성 연구, 지질학회지, 40(2), 241-254
  •  
  • 8. Ball, W.P. and Roberts, P.V., 1991, Long-term Sorption of Halogenated Organic Chemicals by Aquifer Material. 2. Intraparticle Diffusion, Environ. Sci. Technol., 25(7), 1237-1249
  •  
  • 9. Capriel. P., A. Haisch. and S. U. Khan., 1985, Distribution and nature of after the herbicide application, J. Agric. Food Chem, 33, 567-569
  •  
  • 10. Cary, T.C. and Daniel, E.K., 1994, Effects of Polar and Nonpolar Groups on the Solubility of Organic Compounds in Soil Organic Matter, Environ. Sci. Technol., 28(6), 1139-1144
  •  
  • 11. Cary, T.C., Susan, E.M., and Daniel, E.K., 1998, Partition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments, Environ. Sci. Technol., 32, 264-269
  •  
  • 12. Chefetz, B., Bilkis, Y.I., Polubexova, T., 2004, Sorption-desorption behavior of triazine and phenylurea herbcides in Kishon river sediments, Water Res., 38, 4383-4394
  •  
  • 13. Chiou, C.T., McGroddy, S.E., and Kile, D.E., 1998b, Partition characteristics of polycyclic hydrocarbons on soils and sediments, Environ. Sci. Technol., 32, 264-269
  •  
  • 14. Farrell, J. and Reinhard, M., 1994, Desorption of Halogenated Organics from Model solids, sediments and soil under unsaturated conditions, 1. isotherms, Environ. Sci. Technol., 28(1), 53- 62
  •  
  • 15. Huang, W., Yu, H., and Weber, W. J., Jt., 1998, Hysterisis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 1. A comparative analysis of experimental protocols, Journal of Contaminant Hydrology, 31, 129-148
  •  
  • 16. Kan, A.T., Fu, G., and Tomson, M.B., 1991, Adsorption/desorption hysteresis in organic pollutants and soil/sediment interaction, Environ. Sci. Technol., 28, 859-867
  •  
  • 17. Khan, S.U., 1991, Bound(nonextractable) Pesticide degradation products in soil. in Am. Chem. Soc. Symp. Ser. 459. Am. Chem. Soc. Washington, DC
  •  
  • 18. Koskinene, W.C., O'Connor, G.A., and Cheng, H.H., 1979, Characterization of hysteresis in the desorption of 2,4,5-T from soils, Soil Sci. Soc. Am. J., 43, 871-874
  •  
  • 19. Kulikova, N.A. and Perminova, I.V., 2002, Binding of atrazine to humic substances from soil, peat, and coal related to their structure, Environ. Sci. Technol., 36(17), 3720-3724
  •  
  • 20. Leenheer, J.A. and Ahlrichs, J.L., 1971, A kinetic and equilibrium study of the adsorption of carbaryl and parathion upon soil organic matter surfaces, Soil Sci. Soc. Amer. Proc., 35, 700-705
  •  
  • 21. Lyman, W.J., Reidy, P.J., and Levy, B., 1992, Mobility and Degradation of organic contaminants in subsurface environments, C.K. Smoley, Inc., Chelsea
  •  
  • 22. McGlamery, M.D. and Slife, F.W., 1966, The adsorption and desorption of atrazine as affected by pH, temperature, and concentration. Weeds, 14, 237-239
  •  
  • 23. Obien, S.R. and Green, R.E., 1969. Degradation of atrazine in four Hawaiian soils, Weed Sci, 17, 509-514
  •  
  • 24. Park, J.H., Feng, Y., Ji, P., and Thomas, C.V., 2003, Assessment of Bioavailability of Soil-Sorbed Atrazine, Applied and Environmental Microbiology, 69(6), 3288-3298
  •  
  • 25. Piatt, J.J., Backhus, D.A., Capel, P.D., and Eisenreich, S.J., 1996, Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbin aquifer sediments, Environ. Sci. Technol., 30, 751-760
  •  
  • 26. Pusino, A.W.L. and Gessa, C., 1992, Influence of organic matter and its clay complexs on metoachlor adsorption on soil, Pestic, Sci, 36, 283-286
  •  
  • 27. Radosevich, M., Traina, S.J., Hao, Y.L., and Tuovinen, O.H., 1995, Degradation and mineralization of atrazine by a soil bacterial isolate, Appl. Environ. Microbial. 61, 297-302
  •  
  • 28. Schwarzenbach, R.P., 1992, In Environmental Organic Chemistry, John Wiley & Sons, Inc, NY
  •  
  • 29. Sharer, M., Park, J.H., Voice, T.C., and Boyd, S.A., 2003, Aging effect on the sorption - desorption characteristics of Anthropogenic Organic Compounds in Soil, J. Environ. Qual., 32, 1385- 1392
  •  
  • 30. Skipper, H.D. and Volk, V.V., 1972. Biological and chemical degradation of atrazine in three Oregon soils, Weed Sci, 20, 344- 347
  •  
  • 31. Swanson, R.A., and Dutt, G.R., 1973, Chemistry and physical processes that affect atrazine movement and distribution in soil system, Soil Sci. Soc. Am. Proc., 37, 872-876
  •  
  • 32. van Genuchten, M. Th., J.M. Davidson, and P.J. Wierenga., 1974, An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through soils, Soil Sci. Soc. Am. J, 38, 29-34
  •  
  • 33. Weber, J.B., 1970, Mechanism of adsorption of s-triazines by clay colloids and factors affecting plant availability, Residue Rev, 32, 93-130
  •  
  • 34. Weber, W. J. Jr., McGinley, P.M., and Katz, L.E., 1992, A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments, Environ. Sci. Technol., 26, 1955-1962
  •  
  • 35. Xing, B., Pignatello, J., Gigliotti, B., 1996, Competitive sorption between atrazine and other organic compounds in soils and model sorbents, Environ. Sci. Technol., 30, 2432-2440
  •  

This Article

  • 2008; 13(2): 21-29

    Published on Apr 30, 2008