• Modeling of the Nitrate Adsorption Kinetics onto $ZnCl_2$ Treated Granular Activated Carbon
  • Ji, Min-Kyu;Jung, Woo-Sik;Bhatnagar, Amit;Jeon, Byong-Hun;
  • Department of Environmental Engineering, Yonsei University;Department of Environmental Engineering, Yonsei University;Department of Environmental Engineering, Yonsei University;Department of Environmental Engineering, Yonsei University;
  • 염화아연으로 표면개질된 입상활성탄의 질산성질소 흡착속도의 모델링 연구
  • 지민규;정우식;;전병훈;
  • 연세대학교 환경공학부;연세대학교 환경공학부;연세대학교 환경공학부;연세대학교 환경공학부;
Abstract
Nitrate adsorption from aqueous solutions onto zinc chloride ($ZnCl_2$) treated coconut Granular Activated Carbon (GAC) was studied in a batch mode at two different initial nitrate concentrations (25 and 50 mg/L). The rate of nitrate uptake on prepared media was fast in the beginning, and 50% of adsorption was occurred within 10 min. The adsorption equilibrium was achieved within one hour. The mechanism of adsorption of nitrate on $ZnCl_2$ treated coconut GAC was investigated using four simplified kinetic models : the rate parameters were calculated for each model. The kinetic analysis indicated that pseudo-second-order kinetic with pore-diffusion-controlled was the best correlation of the experimental kinetic data in the present adsorption study.

염화아연($ZnCl_2$)으로 표면개질된 코코넛 입상활성탄(Granular Activated Carbon, GAC)의 질산성질소 제거제로서의 적용가능성을 알아보기 위해 두 가지 질산성질소 농도(25 mg/L, 50 mg/L) 조건에서 수중에서의 질산성질소 흡착능력을 평가하였다. 표면개질된 코코넛 입상활성탄의 질산성질소 흡착은 반응초기에 빠르게 진행되어 10분 이내에 흡착율이 50%에 이르렀고 흡착평형에 소요된 시간은 1시간 이내였다. 염화아연으로 표면개질된 코코넛 입상활성탄의 질산성질소 흡착 원리를 조사하기 위해 네 가지 속도 모델들(유사 일차 모델, 유사 이차 모델, Weber & Morris의 입자내 확산 모델, 그리고 Bangham의 공극 확산 모델)을 각 모델의 속도 상수(k)에 따라 적용하였다. 그 결과, 본 연구의 흡착속도는 공극 확산 단계에 의하여 결정되는 것으로 사료되며 유사 이차 모델을 따르는 것으로 나타났다.

Keywords: Nitrate pollution;Adsorption;$ZnCl_2$ treated activated carbon;Kinetic modeling;

Keywords: 질산성질소 오염;흡착;염화아연으로 개질된 활성탄;속도론적 모델링;

References
  • 1. 국제인구행동연구소(PAI) : Sustaining Water(Population and the Future Renewable Water Suppies), 1993
  •  
  • 2. 김탁수, 이용미, 김문선, 김성연, 신해철, 최경호, 정문호, 2004, 일부 농촌지역의 오염원 현황과 먹는물 수질에 관한 조사연구, 한국환경위생학회지, 30(2), 98-103
  •  
  • 3. 연경호, 문승현, 1999, 전기투석과 전기탈이온법에 의한 음용수에서의 질산성질소 제거, 대한환경공학회, 21(1), 87-99
  •  
  • 4. 연경호, 이승학, 이관용, 박용민, 강상윤, 이재원, 최용수, 이상협, 2007, 메조기공 실리카에 부착된 영가철을 이용한 질산성질소의 환원, 상하수도학회지, 21(1), 139-147
  •  
  • 5. 이용주, 민지희, 김종호, 김한승, 2006, 이온교환수지와 나노여과 막을 이용한 질산성질소의 제거특성 비교, 대한상하수도학회한국물환경학회 공동추계학술발표대회 논문집, 2006, pp. 171-176
  •  
  • 6. 지민규, 최양훈, 정우식, 이상훈, 김선준, 민부기, 아밋바트나가, 김성헌, 정형근, 전병훈, 강준원, 2007, 염화아연으로 표면 개질된 입상활성탄의 질산성질소 흡착연구, 한국지구시스템공학회지, 44(6), 492-499
  •  
  • 7. 환경부, 2007, 2006년 지하수 수질측정망 운영결과
  •  
  • 8. 환경부, 환경백서, 452-458, 2003
  •  
  • 9. Aharoni, C. and Ungarish, M., 1977, Kinetics of activated chemisorption Part 2.- Theoritical models, J. Chem. Soc. Faraday I., 73, 456-464
  •  
  • 10. Chiu, H.-F., Tsai, S.-S., and Yang, C.Y., 2007, Nitrate in drinking water and risk of death from bladder cancer: An ecological case-control study in Taiwan, J. Toxicol. Environ. Hlth., Part A, 70, 1000-1004
  •  
  • 11. Dore, M., Simon, Ph., Deguin, A., and Victot, J., 1986, Removal of nitrate in drinking water by ion exchange-Impact on the chemical quality of treated water, Water Res., 20, 221-232
  •  
  • 12. Haribabu, E., Upadhya, Y.D., and Upadhyay, S.N., 1993, Removal of phenols from effluents by fly ash, Int. J. Environ. Studies, 43, 169-176
  •  
  • 13. Ho, Y.S. and McKay, G., 1999, The sorption of lead(II) ions on peat, Water Res., 33, 578-584
  •  
  • 14. Ho, Y.S., Ng, J.C.Y. and McKay, G., 2001a, Removal of lead(II) from effluents by sorption on peat using second-order kinetics, Sep. Sci. Technol., 36, 241-261
  •  
  • 15. Ho, Y.S. and Chiang, C.C., 2001b, Sorption studies of acid dye by mixed sorbents, Adsorption, 7, 139-147
  •  
  • 16. Ho, Y.S. and McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465
  •  
  • 17. Huang, Y.H. and Zhang, T.C., 2004, Effects of low pH on nitrate reduction by iron powder, Water Res., 38, 2631-2642
  •  
  • 18. Kumar, M. and Chakraborty, S., 2006, Chemical denitrification of water by zero-valent magnesium powder, J. Hazard. Mater., B135, 112-121
  •  
  • 19. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, K. Svenska Vetenskapsakad Handl., 24, 1-39
  •  
  • 20. Mohanty, K., Jha, M., Meikap, B.C., and Biswas, M.N., 2005, Preparation and characterization of activated carbons from terminalia arjuna nut with zinc chloride activation for the removal of phenol from wastewater, Ind. Eng. Chem. Res., 44, 4128-4138
  •  
  • 21. Mohanty, K., Jha, M., Meikap, B.C., and Biswas, M.N., 2005, Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed feom Terminalia arjuna nuts activated with zinc chloride, Chem. Engg. Sci., 60, 3049-3059
  •  
  • 22. Namasivayam, C. and Sangeetha, D., 2005, Removal and recovery of nitrate from water by $ZnCl_2$ activated carbon from coir pith, an agricultural solid waste, Ind. J. Chem. Technol., 12, 513-521
  •  
  • 23. Ozturk, N. and Bekta , T.E., 2004, Nitrate removal from aqueous solution by adsorption onto various materials, J. Hazardous Mat., B112, 155-162
  •  
  • 24. Panday, K.K., Prasad, G., and Singh, V.N., 1985, Copper(II) removal from aqueous solutions by fly ash, Water Res., 19, 869-873
  •  
  • 25. Pintar, A., Batista J., and Levec, J., 2001, Catalytic denitrification: direct and indirect removal of nitrates from potable water, Catalysis Today, 66, 503-510
  •  
  • 26. Periasamy, K. and Namasivayam, C., 1994, Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: Adsorption rates and equilibrium studies, Ind. Eng. Chem. Res., 33, 317-320
  •  
  • 27. Schoeman, J.J. and Steyn, A., 2003, Nitrate removal with reverse osmosis in a rural area in South Africa, Desalination, 155, 15-26
  •  
  • 28. Soares, M.I.M., 2000, Biological denitrification of groundwater, Water. Air. Soil Pollut., 123, 183-193
  •  
  • 29. Tutem, E., Apak, R., and Unal, C.F., 1998, Adsorptive removal of chlorophenols from water by bituminous shale, Water Res., 32, 2315-2324
  •  
  • 30. US Environmental Protection Agency, 2000, Drinking water standards and health advisories, US Environmental Protection Agency, Office of Water, 822-B-00-001
  •  
  • 31. Weber Jr., W.J. and Morris, J.C., 1963, Kinetics of adsorption on carbon from solution, J. Sanit. Engg. Div., ASCE 89 (SA2), pp. 31-59
  •  

This Article

  • 2008; 13(3): 21-26

    Published on Jun 30, 2008