• Synthesis of Oxidation Resistant Core-shell Nanoscale Zero-valent Iron by Controlled Air Contact
  • Ahn, Jun-Young;Kim, Hong-Seok;Hwang, In-Seong;
  • Department School of Civil & Environmental Engineering, Pusan National University;Department School of Civil & Environmental Engineering, Pusan National University;Department School of Civil & Environmental Engineering, Pusan National University;
  • 공기접촉 제어를 통한 산화방지 Core-Shell 나노영가철의 제조
  • 안준영;김홍석;황인성;
  • 부산대학교 사회환경시스템공학과;부산대학교 사회환경시스템공학과;부산대학교 사회환경시스템공학과;
Abstract
Experimental studies were conducted to characterize the synthesized nanoscale zero-valent iron (NZVI) which is resistant to oxidation in the atmospheric environment. XRD, XPS, and TEM analyses revealed that the oxidation-resistant NZVI particles formed under various controlled air contact conditions (4, 8 and 12 mL/min) have shells with ${\sim}$5 nm thickness. The shells consist of magnetite (${Fe_3}{O_4}$) and maghemite (${\gamma}-{Fe_2}{O_3}$), predominantly. No substantial differences were found in the shell components and thickness among NZVI particles formed under the various air flow rates. On the other hand, shell was not detected in the TEM image of rapidly oxidized NZVI particles. NZVI particles synthesized under the various air flow rates showed similar TCE degradation performances ($k_{obs}$= 0.111, 0.102, and 0.086 $hr^{-1}$), which are equivalent to approximately 80% of those obtained by the fresh NZVI particles. TCE degradation efficiencies of the NZVI particles(fresh, controlled air contact and rapidly oxidized) were improved after equilibrating with water for one day, indicating that depassivation of the shells occurred. The performances of NZVI particles decreased to 90% and 50% of those of the fresh NZVI particles, when they were equilibrated with the atmosphere for a week and two months, respectively. The NZVI particles synthesized under the controlled air contact would have advantages over traditional NZVI particles in terms of practical application into the site, because of their inertness toward atmospheric oxygen.

본 연구는 대기중에서 안정한 나노크기 영가철을 제조한 후 그 특성을 평가하기 위해 수행되었다. XRD, XPS 분석을 통해 인위적으로 4, 8, 12 mL/min 유량의 공기 접촉을 통해 형성된 shell의 두께는 5 nm로 모두 유사한 것으로 확인되었고, shell의 성분은 magnetite(${Fe_3}{O_4}$), maghemite(${\gamma}-{Fe_2}{O_3}$)가 주성분임을 확인할 수 있었다. 4, 8, 12 mL/min의 접촉 공기 유량에 따른 shell의 명확한 성분 및 두께 변화는 확인할 수 없었다. 반면 대기 중에서 공기와 급속으로 접촉시킨 나노크기 영가철의 경우는 TEM 분석 결과 shell 층이 확인되지 않았다. 4, 8, 12 mL/min의 유량으로 공기 접촉된 나노크기 영가철의 TCE 분해능($k_{obs}$= 0.111, 0.102, and 0.086 $hr^{-1}$) 또한 큰 차이를 보이지 않았으며, fresh한 나노크기 영가철에 비해서는 약 80%의 분해효율을 나타내었다. Fresh한 나노크기 영가철 및 4 mL/min과 급속으로 공기 접촉시킨 나노크기 영가철을 물속에서 1일 동안 물과 접촉시킨 후 분해능을 평가한 실험에서는 공기 접촉 후 바로 분해 실험한 것 보다 분해능이 모두 향상되었다. 이는 물과의 반응을 통해 shell 층이 벗겨져 순수한 Fe(0)와 TCE의 접촉이 빨라져서 일어난 결과로 판단되어진다. 또한 각각 1주일과 2달간 대기 중에서 방치한 후 분해 실험한 결과 공기 접촉 후 바로 분해 실험한 결과와 비교해서 분해능이 90%와 50%로 감소하였다. 따라서 본 연구결과 일정 유량으로 공기 접촉 시킨 나노크기 영가철은 대기 중 산소에 안정하기 때문에 실제 현장 적용에 유리할 것으로 판단된다.

Keywords: NZVI;Air Contact Control;Oxidation Resistant Shell;Reductive Dechlorination;TCE;

Keywords: 나노크기 영가철;공기접촉제어;산화방지 shell;환원성 탈염소화;

References
  • 1. 김영훈, 2002, 팔라듐으로 코팅된 영가철을 이용한 염화페놀류의 환원적 분해, 한국폐기물학회지, 19(5), 623-629
  •  
  • 2. 고석오, 송호철, 김영훈, 2005, 용존가스 종류 및 화학적 조건별 영가철(Fe0)에 의한 6가크롬의 반응성 평가, 대한환경공학회지, 25(5B), 407-412
  •  
  • 3. 유경열, 옥용식, 양재의, 2007, 영가철(Zerovalent Iron)을 이용한 수용액 중 비소(v)의 불용화, 한국혼경농학회지, 26(3), 197-203
  •  
  • 4. 환경부, 2003, 2002 전국 지정폐기물의 발생 및 처리현황
  •  
  • 5. Alowitz, M.J. and Scherer, M.M., 2002, Kinetics of nitrate, Nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36, 299-306
  •  
  • 6. Arnold, W.A. and Roberts, A.L., 2000, Pathway and kinetics of chlorinated ethylene and chlorinated acethylene reaction with Fe(0) particles, Environ. Sci. Technol., 34, 1794-1805
  •  
  • 7. Blowes, D.W., Ptacek, C.J., Benner, S.G., and McRae, C.W.T., 2000, Treatment of inorganic contaminants using permeable reactive barriers, Contami. Hydrol., 45(1-2), 123-137
  •  
  • 8. Chen, S.S., Hsu, H.D., and Li, C.W., 2004, A new method to produce nanoscale iron for nitrate removal, Nanoparti. Res., 6, 639-647
  •  
  • 9. Farrokhpay, S., 2004, Interaction of polymeric dispersants with Titania pigment particles, Ph.D. Dissertation, University of South Australia, p.174
  •  
  • 10. Keum, Y.S. and LI, Q.X., 2005, Reductive debromination of polybrominated diphenyl ethers by zerovalent iron, Environ. Sci. Technol., 39, 2280-2286
  •  
  • 11. Kuhn, L.T., Bojesen, A., Timmermann, L., Nielsen, M.M., and Morup, S., 2002, Structural and magnetic properties of coreshell iron-iron oxide nanoparticles, J. Phys.: Condens. Matter, 14, 13551-13567
  •  
  • 12. Lee, Y.C., Kwon, T.S., Yang, J.S., and Yang, J.W., 2007, Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion, J. Hazard. Mater., 140, 340-345
  •  
  • 13. Li, X.Q., Elliott, D.W., and Zhnag, W.X., 2006, Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and Engineering Aspects, Crit. Rev. Solid State and Mater. Sci, 31(4), 111-122
  •  
  • 14. Li, X.Q. and Zhang, W.X., 2006, Iron nanoparticles: the coreshell structure and unique properties for Ni(II) sequestration, Langmuir, 22, 4638-4642
  •  
  • 15. Li, X.Q. and Zhang, W.X., 2007, Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution x-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C., 111, 6939-6946
  •  
  • 16. Liu, Y. and Lowry., 2006, Effect of particle age (FeO Content) and solution pH on ZVI reactivity: $H_2$ evolution and TCE dechlorination, Environ. Sci. Technol., 40, 6085-6090
  •  
  • 17. Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., and Lowry, G.V., 2005, TCE dechlorination rate, pathway, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39, 1338-1345
  •  
  • 18. Martin, J.E., Herzing, A.A., Yan, W., Li, X.Q., Koel, B.E., Kiely, C.J., and Zhang, W.X., 2008, Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles, Langmuir, 24, 4329-4334
  •  
  • 19. Nurmi, J.T., Tratny, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, J.C., and Driessen, M.D., 2005, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 15, 1221-1230
  •  
  • 20. Phenrat, T., Liu, Y., Kim, H. J., Saleh, N., Sirk, K., Tilton, R. D., and Lowry, G. V., 2007, Effect of adsorbed polyelectrolytes of TCE dechlorination and product distribution by Fe(0)/Fe-oxide nanoparticles, American Chemistry Society 233rd International Meeting, Mar. 25-29
  •  
  • 21. Sarathy, V., Nurmi, J.T., Tratnyek, P.G., Nurmi, J.T., Baer, D.R., Amonette, J.E., Chun, C.L., Penn, R.L., and Reardon, E.J., 2008, Aging of iron nanoparticles in aquesous solution: effects on structure and reactivity, J. Phys. Chem. C., 112, 2286-2293
  •  
  • 22. Signorini, L., Pasquini, L., and Savini, L., 2003, Size-dependent oxidation in iron/iron oxide core-shell nanoparticles, Phys. Rev. B, 68(19), 195-202
  •  
  • 23. Sohn, K.G., Kang, S.W., Ahn, S.Y., Woo, M.W., and Yang, S., 2006, Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation, Environ. Sci. Technol., 40, 5514-5519
  •  
  • 24. Sun, Y., Li, X., Cao, J., Zhang, W., and Wang, H., 2006, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120, 47-56
  •  
  • 25. Sun, Y.P., Li, X.Q., Zhang, W.X., and Wang, H.P., 2007, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids Surf., A., 308, 60-66
  •  
  • 26. Wang, C.B. and Zhang, W.X., 1997, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31(7)
  •  
  • 27. Xiong, Z., Zhao, D., and Pan, G., 2007, Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles, Water Research, 41, 3497-3505
  •  

This Article

  • 2008; 13(6): 93-102

    Published on Dec 31, 2008