• Pilot-scale Applications of a Well-type Reactive Barrier using Autotrophic Sulfur-oxidizers for Nitrate Removal
  • Lee, Byung-Sun;Um, Jae-Yeon;Lee, Kyu-Yeon;Moon, Hee-Sun;Kim, Yang-Bin;Woo, Nam-C.;Lee, Jong-Min;Nam, Kyoung-Phile;
  • Rural Research Institute, Korea Rural Community Corporation;Rural Research Institute, Korea Rural Community Corporation;Dept. of Civil and Environmental Engineering, Seoul National University;School of Earth and Environmental Sciences, Seoul National University;Rural Research Institute, Korea Rural Community Corporation;Dept. of Earth System Sciences, Yonsei University;Jinbo E&C Co. Ltd.;Dept. of Civil and Environmental Engineering, Seoul National University;
  • 독립영양 황탈질 미생물을 이용한 관정형 반응벽체의 현장적용성 연구
  • 이병선;엄재연;이규연;문희선;김양빈;우남칠;이종민;남경필;
  • 한국농어촌공사 농어촌연구원;한국농어촌공사 농어촌연구원;서울대학교 건설환경공학부;서울대학교 지구환경과학부;한국농어촌공사 농어촌연구원;연세대학교 지구시스템과학과;(주)진보이엔씨;서울대학교 건설환경공학부;
Abstract
The applicability of a well-type autotrophic sulfur-oxidizing reactive barrier (L $\times$ W $\times$ D = $3m\;{\times}\;4\;m\;{\times}\;2\;m$) as a long-term treatment option for nitrate removal in groundwater was evaluated. Pilot-scale (L $\times$ W $\times$ D = $8m\;{\times}\;4\;m\;{\times}\;2\;m$) flow-tank experiments were conducted to examine remedial efficacy of the well-type reactive barrier. A total of 80 kg sulfur granules as an electron donor and Thiobacillus denitrificans as an active bacterial species were prepared. Thiobacillus denitrificans was successfully colonized on the surface of the sulfur granules and the microflora transformed nitrate with removal efficiency of ~12% (0.07 mM) for 11 days, ~24% (1.3 mM) for 18 days, ~45% (2.4 mM) for 32 days, and ~52% (2.8 mM) for 60 days. Sulfur granules attached to Thiobacillus denitrificans were used to construct the well-type reactive barrier comprising three discrete barriers installed at 1-m interval downstream. Average initial nitrate concentrations were 181 mg/L for the first 28 days and 281 mg/L for the next 14 days. For the 181 mg/L (2.9 mM) plume, nitrate concentrations decreased by ~2% (0.06 mM), ~9% (0.27 mM), and ~15% (0.44 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. For the 281 mg/L (4.5 mM) plume, nitrate concentrations decreased by ~1% (0.02 mM), ~6% (0.27 mM), and ~8% (0.37 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. Nitrate plume was flowed through the flow-tank for 49 days by supplying $1.24\;m^3/d$ of nitrate solution. During nitrate treatment, flow velocity (0.44 m/d), pH (6.7 to 8.3), and DO (0.9~2.8 mg/L) showed little variations. Incomplete destruction of nitrate plume was attributed to the lack of retention time, rarely transverse dispersion, and inhibiting the activity of denitrification enzymes caused by relatively high DO concentrations. For field applications, it should be considered increments of retention time, modification of well placements, and intrinsic DO concentration.

독립영양 황탈질 미생물 Thiobacillus denitrificans를 이용한 질산염 오염지하수 정화 기술을 개발하고자, 3열의 관정형 반응벽체(길이 $\times$ 너비 $\times$ 깊이 = $3m\;{\times}\;4\;m\;{\times}\;2\;m$)를 한국농어촌공사 수리시험장(길이 $\times$ 너비 $\times$ 깊이 = $8m\;{\times}\;4\;m\;{\times}\;2\;m$)에 설치하고 현장적용성을 검토하였다. 전자공여체로 총 80 kg의 황입자를, 탈질미생물로 Thiobacillus denitrificans를 준비하였다. 황입자 표면에 Thiobacillus denitrificans를 부착하는 1톤 용량 물통 실험에서, Thiobacillus denitrificans는 질산염 농도 375 mg/L(6.1 mM)의 오염수를 11일 경과 후 ~12% (0.7 mM), 18일 경과 후 ~24%(1.3 mM), 32일 경과 후 ~45%(2.4 mM), 그리고 부착 종료 시(60일)까지 ~52%(2.8 mM)를 제거하며 황입자 표면에 성공적으로 부착 증식하였다. 이후, Thiobacillus denitrificans가 부착된 황입자를 3열의 관정형 반응벽체(각 열 간격 1 m)에 주입하여 황탈질 미생물 관정형 반응벽체를 설치하였다. 초기 질산염 농도 평균 181 mg/L 인 인공오염지하수에 대하여 28일 간 1차 정화실험을 실시하였고, 평균 281 mg/L 인 인공오염지하수에 대하여 14일 간 2차 정화실험을 실시하였다. 1차 실험의 인공오염지하수(2.9 mM)는 1열 반응 후 ~2%(0.06 mM), 2열 반응 후 ~9%(0.27 mM), 3열 반응 후 ~15%(0.44 mM)의 질산염이 제거되었다. 2차 실험의 인공오염지하수(4.5 mM)는 1열 반응 후 ~1%(0.02 mM), 2열 반응 후 ~6%(0.27 mM), 3열 반응 후 ~8%(0.37 mM)가 제거되었다. 실험 기간 중 인공오염지하수의 주입용량은 $1.24\;m^3/d$, 유속은 0.44 m/d를 유지하였고, pH는 6.7~8.3, DO는 0.9~2.8 mg/L 범위로 큰 변화가 없었다. 본 관정형 반응벽체 실험의 낮은 정화효율의 원인은 인공오염지하수에 대한 Thiobacillus denitrificans의 탈질 소요 시간 부족, 관정형 반응벽체의 개별 관정사이로 빠져나가는 인공오염지하수체, 그리고 질산염 환원효소의 활성 및 생성을 억제시키는 용존산소의 상대적으로 높은 농도 때문으로 추정된다. 황탈질 관정형 반응벽체의 현장적용시에는 탈질반응에 필요한 체류시간, 관정형 반응벽체의 개수 및 간격, 그리고 용존산소 농도 등 해당 오염부지의 고유 특성을 고려한 설계가 필요하다.

Keywords: autotrophic denitrification;sulfur;nitrate;a well-type reactive barrier;

Keywords: 독립영양탈질;황입자;질산염;관정형 반응벽체;

References
  • 1. 문희선, 장선우, 남경필, 김재영, 2005, 강변여과수의 질산성 질소 제거를 위한 생물학적 반응벽체의 준파일럿 실험에 관한 연구, 대한환경공학회, 27, 302-308
  •  
  • 2. 신도연, 문희선, 김재영, 남경필, 2006, 질산성 질소 제거를 위한 독립영양 황탈질 칼럼에서의 미생물 적응에 관한 연구, 지하수토양환경, 11(2), 38-44
  •  
  • 3. Claus, G., and Kutzner, H.J., 1985, Autotrophic denitrification by Thiobacillus denitrificans. Appl. Microbiol. Biot., 22, 289-296
  •  
  • 4. Hashimoto, S., Furukawa, K., and Shioyoma, M., 1987, Autotrophic denitrification using elemental sulfur, J. Fermen. Technol., 63, 683-692
  •  
  • 5. Holt, J.G., Krieg, N.R., Sneath, P.H., Staley, J.T., and Williams, S.T., 1994, Bergey's Manual of Determinative Bacteriology, ninth ed. Williams & Wilkins, Baltimore, p. 361
  •  
  • 6. Hoor, T.T., 1975, A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov., Neth. J. of Sea Res., 9, 344-351
  •  
  • 7. Kelly, D.G. and Wood, A.P., 2000, Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the $\beta$-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain, Int. J. Sys. Evol. Microbiol., 50, 547-550
  •  
  • 8. Kim, E., and Bae, J., 2000, Alkalinity requirement and the possibility of simultaneous heterotrophic denitrification during sulfur-utilizing autotrophic denitrification, Water Sci. Techol., 42, 233-238
  •  
  • 9. Koenig, A. and Liu, L.H., 1996, Autotrophic denitrification of landfill leachate using elemental sulfur, Water Sci. Technol., 34, 469-476
  •  
  • 10. Koenig, A., and Liu, L.H., 2001, Kinetic model of autotrophic denitrification in sulfur packed-bed reactors, Water Res., 35, 1969-1978
  •  
  • 11. Kruithof, J.C., van Bennekom, C.A., Dierx, H.A., Hijnen, W.A.M., van Paassen, J.A.M., and Schooners, J.C., 1988, Nitrate removal from groundwater by sulphur/limestone filtration, Water Supply, 6, 207-217
  •  
  • 12. Lee, D., Lee, I., Choi, Y., and Bae, J., 2001, Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification, Process Biochem., 36, 1215-1224
  •  
  • 13. Lee, B.S., Kim, J.H., Lee, K.C., Kim, Y.B., Schwartz, F.W., Lee, E.S., Woo, N.C., and Lee, M.K., 2009, Efficacy of controlledrelease $\text KMnO_4$ (CRP) for controlling dissolved TCE plume in groundwater: A large flow-tank study, Chemosphere, 74, 745-750
  •  
  • 14. Maier, R.M., 2000. Biogeochemical cycling. In: Pepper, I.L., Gerba, C.P. (Eds.), Environmental Microbiology, Academic Press, San Diego, CA, USA., 336-340
  •  
  • 15. Moon, H.S., Ahn, K.H., Lee, S., Nam, K., and Kim, J.Y,, 2004, Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system, Environ. Pollut., 129, 499-507
  •  
  • 16. Moon, H.S., Shin, D.Y., Nam, K., and Kim, J.Y,, 2008, A longterm performance test on an autotrophic denitrification column for application as a permeable reactive barrier, Chemosphere 73, 723-728
  •  
  • 17. Oh, S.E., Kim, K.S., Choi, H.C., and Kim, J.S., 1999, Kinetics and physiology of autotrophic denitrification by denitrifying sulfur bacteria. Proceedings of the 7th IAWQ Asia-Pacific Regional Conference-ASIAN WATERQWAL, '99 1, 173-178
  •  
  • 18. Zhang, T.C., and Lampe, D.G., 1999, Sulfur:limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch expements, Water Res., 33, 599-608
  •  
  • 19. Zhang, T.C., and Shan, J., 1999, In situ septic tank effluent denitrification using a sulfur-limestone process, Water Environ. Res., 71, 1283-1291
  •  

This Article

  • 2009; 14(3): 40-46

    Published on Jun 30, 2009

  • Received on Jan 14, 2009
  • Revised on Jan 16, 2009
  • Accepted on Jun 22, 2009