• A Study on the Removal of Heavy Metals from Groundwater Using Permeable Reactive Barriers Based on Nano FeS
  • Jung, Gwan-Ju;Choi, Sang-Il;Lee, Jai-Young;
  • Department of Environmental Engineering, University of Seoul;Department of Environmental Engineering, Kwangwoon University;Department of Environmental Engineering, University of Seoul;
  • 나노 FeS를 이용한 투과성반응벽체의 중금속 오염 지하수 처리에 관한 연구
  • 정관주;최상일;이재영;
  • 서울시립대학교 환경공학부;광운대학교 환경공학과;서울시립대학교 환경공학부;
Abstract
The acid mine drainage (AMD) and landfill leachates released into the subsurface environment can result in serious environmental problems like soil and groundwater contamination. The AMD and the leachates of landfill were known to contain many heavy metals. In this study, the author assessed the reactivity and ability of the FeS coated-ALC for the removal of contaminants (As, Cd, Cu, Pb, Ni, Zn, Al) in AMD and leachates in landfill. The synthetic nano-FeS and Autoclaved Lightweight Concrete (ALC) were used as reactive materials in the permeable reactive barriers(PRBs). The result of batch test indicated that synthetic nano-FeS can remove 99% of heavy metals for the 1hr of reaction time except for As and Ni(about 90%). However, the 80% of As and Ni was removed in column 1(FeS coated-ALC). The column 2(Ore FeS) removed more than 99% of heavy metals. The pH of the column 1 was increased from 3.51 to 6.39~6.50, and the pH with column 2 was increased from 3.51 to 9.20. As the result of this study, the author can surmise that the synthetic nano-FeS coated ALC will use as a very good reactive material of the PRBs to treat the contaminated groundwater with AMD and leachate of landfill.

폐금속광산과 비위생매립지로 인하여 중금속으로 오염된 지하수를 처리하기 위해 FeS를 이용한 투과성반응벽체(Permeable Reactive Barriers; PRBs)를 이용한다면 효과적인 결과를 보일 것으로 예상되어 FeS를 PRB 매질로 사용하기 위한 연구를 수행하였다. 컬럼 실험에 앞서 반응 매질들의 중금속 제거 특성을 알바보고자 합성 나노 FeS, 원석 FeS, 경량기포콘크리트에 대하여 96시간까지 인공중금속오염지하수와 반응을 시키는 회분식 실험을 수행하였다. 3가지 매질 모두 pH 6 이상에서 평형을 이뤘으며, 합성 나노 FeS는 반응 1시간 이후부터 평형상태에 가까워졌다. 중금속 제거효율은 합성 나노 FeS가 반응 1시간에 As와 Ni를 제외한 모든 중금속 제거율이 99% 이상으로 다른 매질에 비하여 상대적으로 빠른 제거 속도와 높은 효율을 나타내었다. 컬럼실험 결과 합성 나노 FeS로 피복된 경량기포콘크리트로 충진된 컬럼은 회분식 실험과 같은 결과로 나타났으며, 원석 FeS로 충진된 컬럼에서는 초반에 Ni을 제외한 모든 중금속이 99%이상 제거되었으나 pH는 약 9.20에서 평형을 이루었다. 본 연구에서 나타난 결과를 종합하였을 때 다양한 중금속으로 오염되어 있는 지하수를 처리하기 위한 방법으로 별도의 pH 조절이 필요 없는 합성 나노 FeS로 피복된 경량기포콘크리트를 이용한 투과성반응벽체의 적용은 매우 효과적인 것으로 판단된다.

Keywords: Synthetic Nano FeS;Heavy Metal;Groundwater;Permeable Reactive Barriers;

Keywords: 합성 나노 FeS;중금속;지하수;투과성반응벽체;

References
  • 1. 박상원, 박병주, 1999, 유기 리간드 존재하에서 FeS(S)의 중금속 제거 특성 연구, 한국환경과학회지, 8(3), 411-417
  •  
  • 2. 한정상, 1998, 오염지하수·토양의 자연정화와 위해성 평가, 한림원, 서울, 3-42
  •  
  • 3. 환경부, 2007a, 환경백서 2007, 환경부, 과천, 648-658
  •  
  • 4. 환경부, 2007b, 천연환원제에 의한 유해 화학물질 오염 토양과 지하수의 자연복원, 환경부, 과천, 46-56
  •  
  • 5. Blowes, D.W., Ptacek, C.J., Cherry, J.A., Gillham, R.W., and Robertson, W.D., 1995, Passive Remediation of Groundwater Using In Situ Treatment Curtains, Geotechnical Special Publication, 46(2), 1588-1607
  •  
  • 6. Brown, J.R., Bancroft, G.M., Fyfe, W.S., and McLean, R.A.N., 1979, Mercury Removal from Water by Iron Sulfide Minerals. An ESCA Study, Environmental Science and Technology, 13(9), 1142-1144
  •  
  • 7. Butler, E.C. and Hayes, K.F., 1998, Effects of Solution Composition and pH on the Reductive Dechlorination of Hexachloroethane by Iron Sulfite, Environmental Science and Technology, 32(9), 1276-1284
  •  
  • 8. David, L.N., Stan, J.M,, Christopher, C.F., and James, A.D., 2002, Handbook of Groundwater Remediation Using Permeable Reactive Barriers, Elsevier Science, USA, 19-37
  •  
  • 9. Donald, M.K., 1994, Applied Wetland Science and Techanology, Lewis Publishers, USA, 241-280
  •  
  • 10. Edward, A.M., Feank, A.R., and Crahame, J.F., 1995, Solid Waste Landfill Engineering And Design, Prentice Hall PTR, USA, 293-354
  •  
  • 11. EPA, 2001, Cost analyses for selected groundwater cleanup projects : Pump and Treat system and Permeable Reactive Barriers, Soild Waste and Emergency Response (5102G), United States Environmental Protection Agency, 542-R-00-013
  •  
  • 12. Gaspar, B., 2006, Removal of insoluble heavy metal sulfides from water, Chemosphere, 63(7), 1231-1234
  •  
  • 13. Gaudin, A.M., Fuerstenau, D.W., and Turkanis, M.M., 1957, Activation and Deactivation of Sphalerite with Ag and CN Ions, AIME Transactions, 203, 65-69
  •  
  • 14. George, T., Hilary, T., and Vigil, S.A., 1993, Integrated Solid Waste Management: Engineering Principles and Management Issues, McGRAW HILL, USA, 3-22
  •  
  • 15. Georgios, B., Kostas, K., and Ioannis, P., 2006, Laboratory evaluation of $Fe^0 $barriers to treat acidic leachates, Minerals Engineering, 19(5), 505-514
  •  
  • 16. Gupta, V.K., Saini, V.K., and Neeraj, J., 2005, Adsorption of As(III) from aqueous solutions by iron oxide-coated sand, Journal of Colloid and Interface Science, 288(1), 55-60
  •  
  • 17. James, R.O. and Park, G.A., 1975, Adsorption of Zinc(II) at the Cinnabar (HgS)/H2O Interface, Inst. Chem. Eng. Symp., Ser. 71, USA, 157-164
  •  
  • 18. Khan, S. and Khan, N.N., 1983, Influence of lead and cadmium on the growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg-plant (Solanum melongena), Plant and Soil, 74(3), 387-394
  •  
  • 19. Moigmard, M.S., James, R.O., and Healy, T.W., 1977, Adsorption of calcium at the zinc sulphide-water interface, Australian Journal of Chemistry, 30(4), 733-740
  •  
  • 20. Richard T.W. and Mary S.M., 2003, Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage, Chemosphere, 53(7), 715-725
  •  

This Article

  • 2009; 14(6): 19-28

    Published on Dec 31, 2009

  • Received on May 9, 2009
  • Revised on Jul 6, 2009
  • Accepted on Oct 24, 2009