• Effect of Biofilm Formation on Soil Sorbed Naphthalene Degradation
  • Li, Guang-Chun;Chung, Seon-Yong;Park, Jeong-Hun;
  • Dept. of Environmental Engineering, Chonnam National University;Dept. of Environmental Engineering, Chonnam National University;Dept. of Environmental Engineering, Chonnam National University;
  • Biofilm 생성이 토양흡착 나프탈렌 분해에 미치는 영향
  • 이광춘;정선용;박정훈;
  • 전남대학교 환경공학과;전남대학교 환경공학과;전남대학교 환경공학과;
Abstract
Naphthalene-degrading bacteria Pseudomonas aeruginosa CZ6 isolated from contaminated soil can adhere to crystal naphthalene and produce extracellular polymeric substance. LB, YM and MSM medium were used as culture mediums to investigate the formation of biofilm. Biofilm was developed the most in LB medium by Pseudomonas aeruginosa CZ6. In the culture, strain CZ6 growth was rarely affected by naphthalene concentration. Optimal culture condition was $30^{\circ}C$ and pH 7 at 0.10% substrate and 150 rpm shaking. The effect of culture medium on naphthalene degradation in the two soil slurry system was evaluated. The initial degradation rate of naphthalene was highest in the MSM medium of soil slurry. However, the sorbed naphthalene was rapidly degraded at the LB medium when naphthalene availability in liquid was limited. The results of this study suggest that biofilm formation and extracellular polymeric substance production increased bioavailability of soil sorbed naphthalene.

나프탈렌 분해균주인 Pseudomonas aeruginosa CZ6을 오염된 토양에서 분리하였으며 분리된 균주는 결정상태의 나프탈렌에 부착하고 그 주변에 extracellular polymeric substance를 분비하는 특성을 가졌다. LB, YM과 MSM 배지를 사용하여 배지의 종류에 따른 biofilm 생성량을 측정한 결과, LB 배지에서 biofilm이 가장 많이 생성되는 것으로 나타났다. 나프탈렌을 기질로 한 배양조건에서 균주는 기질의 농도 영향을 크게 받지 않고 0.10% 기질, 150 rpm 조건에서 최적 배양조건은 $30^{\circ}C$, pH 7로 나타났다. 두 가지 토양에서 배지의 종류에 따른 나프탈렌의 분해특성을 관찰한 결과 초기에는 MSM 배지에서 나프탈렌이 가장 많이 분해가 되었다. 그러나 생물이용성이 제한을 받는 조건에서 LB 배지의 나프탈렌이 가장 빨리 제거가 되었다. 이런 결과는 biofilm의 형성과 extracellular polymeric substance 생성이 토양에 흡착된 잔류 나프탈렌의 생물학적 이용성을 향상시키기 때문인 것으로 사료된다.

Keywords: Naphthalene;Biodegradation;Pseudomonas aeruginosa CZ6;Biofilm;

Keywords: 나프탈렌;생분해;

References
  • 1. 안영희, 김인수, 김은경, 김무훈, 2003, 토양환경의 오염과 정화, 구미서관, 서우, p. 121
  •  
  • 2. 이광춘, 정선용, 박정훈, 2007, BTEX 분해 복합균주의 분리 및 생분해특성, 한국폐기물학회, 24(8), 689-695
  •  
  • 3. Cerniglia, C.E., 1992, Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation, 3, 351-368
  •  
  • 4. Crocker, F.H., Guerin, W.F., and Boyd, S.A., 1995, Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay, Environ. Sci. Technol., 29, 2953-2958
  •  
  • 5. Calvillo, Y.M. and Alexander, M., 1996, Mechanism of microbial utilization of biphenyl sorbed to polyacrylie beads, Appl. Microbiol. Biotechnol., 45, 383-390
  •  
  • 6. Davey, M.E. and O'Toole, G.A., 2000, Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 64, 847-867
  •  
  • 7. Guerin, W.F. and Boyd, S.A., 1992, Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Appl. Envrion. Microbiol., 58, 1142-1152
  •  
  • 8. Harwood, C.S., Nichols, N.N., Kim, M.K., Ditty, J.L., and Parales, R.E., 1994, Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate, J. Bacteriol., 176, 6479-6488
  •  
  • 9. Means, J.C., Wood, S.G., Hassett, J.J., and Banwart, W.L., 1980, Sorption of polynuclear aromatic hydrocarbons by sediments and soils, Environ. Sci. Technol., 14, 1524-1528
  •  
  • 10. Ma, L.Y., Conover, M., Lu, H.P., Parsek, M.R., Bayles, K., and Wozniak, D.J., 2009, Assembly and development of the Pseudomonas aeruginosa biofilm matrix, PLoS Pathogens, 5, e1000354
  •  
  • 11. Morikawa, M., 2009, Sustainable bioremediation technology by utilizing biofilms, International Symposium for Graduate Studies and Research, Institute of Biotechnology, Chonnam National University, p. 82
  •  
  • 12. Mogil'naya, O.A., Krivomazova, E.S., Kargatva, T.V., 2005, Formation of structured communities by natural and transgenic naphthalene-degrading bacteria, Appl. Biochem. Microbiol., 41, 63-68
  •  
  • 13. Oliveira, M., Bexiga, R., Nunes, S.F., Carneiro, C., and Cavaco, L.M., 2006, Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates, Vet Microbiol, 118, 133-140
  •  
  • 14. Prabhu, Y. and Phale, P.S., 2003, Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: Novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation, Appl. Microbiol. Biotechnol., 61, 342-351
  •  
  • 15. Park, J.W. and Crowley, D.E., 2006, Dynamic changes in nahAc Gene copy numbers during degradation of naphthalene in PAHcontaminated soils, Appl Microbiol Biotechnol, 73, 1322-1329
  •  
  • 16. Rice, S.A., Koh, K.S., Queck, S.Y., Labbate, M., Lam, K.W., and Kjelleberg, S., 2005, Biofilm formation and sloughing in serratia marcescens are controlled by quorum sensing and nutrient cues, J. Bactgeriol., 187, 3477-3485
  •  
  • 17. Roongsawang, N., Hase, K.I., Haruki, M., Imanaka, T., Morikawa, M., and Kanaya, S., 2003, Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38, Chem. Biol., 10, 869-880
  •  
  • 18. Rodrigues, A.C., Wuertz, S., Brito, A.G., and Melo, L.F., 2005, Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects, Biotechnol. Bioeng., 90, 281-289
  •  
  • 19. Seo, J.S., Keum, Y.S., Hu, Y.T., Lee, S.E., and Li, Q.X., 2007, Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol, Biodegradation, 12, 123-131
  •  
  • 20. Siunova, T.V., Anokhina, T.O., Mashukova, A.V., Kochetkov, V.V., and Boronin, A.M., 2007, Rhizosphere strain of Pseudomonas chlororaphis capable of degrading naphthalene in the presence of Cobalt/Nickel, Microbiology, 76(2), 182-188
  •  
  • 21. Stanley, N.R., Britton, R.A., Grossman, A.D., and Lazazzera, B.A., 2003, Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays, J. Bactgeriol., 185, 1951-1957
  •  
  • 22. Sauer, K., Cullen, M.C., Rickard, A.H., Zeef, A.H., Davies, D.G., and Gilbert, P., 2004, Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm, J. Bactgeriol., 186, 7312-7326
  •  
  • 23. Seo, Y.W. and Bishop, P.L., 2007, Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation, Environ. Sci. Technol., 41, 7107-7113
  •  
  • 24. Thakor, N.S., Patel, M.A., Trivedi, U.B., and Patel, K.C., 2003, Production of poly ($\beta$-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene, World J. Microbiol. Biotechnol, 19, 185-189
  •  
  • 25. Uyttebroek, M., Ortega-Calvo, J.J., Breugelmans, P., and Springael, D., 2006, Comparison of mineralization of solid-sorbed phenanthrene by polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium spp. and Sphingomonas spp., Appl. Microbiol. Biotechnol., 72, 829-836
  •  
  • 26. Wilson, S.C. and Jones, K.C., 1993, Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons(PAHs), A Review Environ. Pollut., 81, 229-249
  •  
  • 27. Wick, L.Y., Colangelo, T., and Harms, H., 2001, Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ. Sci Technol., 35, 354-361
  •  
  • 28. Yamazoe, A., Yagi, O., and Oyaizu, H., 2004, Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1, Appl. Microbiol. Biotechnol., 65, 211-218
  •  

This Article

  • 2009; 14(6): 45-52

    Published on Dec 31, 2009

  • Received on Sep 4, 2009
  • Revised on Sep 17, 2009
  • Accepted on Nov 2, 2009