• Natural Reduction Characteristics of Radon in Drinking Groundwater
  • Noh, Hoe-Jung;Jeong, Do-Hwan;Yoon, Jeong-Ki;Kim, Moon-Su;Ju, Byoung-Kyu;Jeon, Sang-Ho;Kim, Tae-Seung;
  • National Institute of Environmental Research;National Institute of Environmental Research;National Institute of Environmental Research;National Institute of Environmental Research;National Institute of Environmental Research;National Institute of Environmental Research;National Institute of Environmental Research;
  • 음용 지하수 중 라돈 자연저감 특성
  • 노회정;정도환;윤정기;김문수;주병규;전상호;김태승;
  • 국립환경과학원;국립환경과학원;국립환경과학원;국립환경과학원;국립환경과학원;국립환경과학원;국립환경과학원;
Abstract
To investigate the natural reduction characteristics of radon with a short half-life (3.82 day) in drinking Qgroundwater, we analyzed the changes of radon concentrations of groundwater, waters in storage tanks, and tap waters from the small-scale groundwater-supply systems (N = 301) by LSC (Liquid Scintillation Counter). We also analyzed the concentrations of uranium (half-life 4.5 billion years) in the waters by ICP/MS to compare with natural reduction of radon concentration. The radon concentrations of 68 groundwater-supply systems occupying 22.6% of the total samples exceeded the US EPA's Alternative Maximum Contaminant Level (AMCL : 4,000 pCi/L), with the average radon concentration of 7,316 pCi/L (groundwaters), 3,833 pCi/L (tank waters) and 3,407 pCi/L (tap waters). Compared to the radon levels of pumped groundwaters, those of tank and tap waters naturally reduced significantly down to about 50%. Especially, in case of 29 groundwater-supply systems with the groundwater radon concentrations of 4,000~6,000 pCi/L, average radon concentrations of the tank and tap waters naturally decreased down to the AMCL. Therefore this study implies that radon concentrations of drinking groundwater can be effectively reduced by sufficient storage and residence in tanks.

Keywords: Radon;Natural reduction;Groundwater;Tank and tap water;AMCL;

References
  • 1. 김용제, 조수영, 윤윤열, 이길용, 2006, 극 저준위 액체섬광계수기를 이용한 지하수 중 라돈($^{222}Rn$) 측정법 연구, 지하수토양환경, 11(5), 59-66.
  •  
  • 2. 김태승, 박종겸, 엄익춘, 윤정기, 정도환, 강기철, 윤대근, 권지철, 2007, 지하수 중 방사성물질 함유실태 조사(I), 국립환경과학원, p. 155.
  •  
  • 3. 성익환, 김대업, 우형주, 조병욱, 박중권, 이한영, 정강섭, 윤윤열, 조수영, 이용주, 이병대, 김통권, 김경수, 추창오, 신동천, 1999, 지하수 중 방사성물질 함유실태에 관한 조사연구(I), 국립환경과학원, p. 338.
  •  
  • 4. 성익환, 김대업, 우형주, 정강섭, 조병욱, 이병대, 홍영국, 박중권, 윤욱, 이봉주, 김용제, 윤윤열, 조수영, 이인호, 추창오, 김정숙, 심형숙, 신동천, 장태우, 2000, 지하수 중 방사성물질 함유실태에 관한 조사연구(II), 국립환경과학원, p. 323.
  •  
  • 5. 성익환, 조병욱, 우형주, 김대업, 김건한, 박중권, 홍영국, 이병대, 윤욱, 이봉주, 이종철, 윤윤열, 김용제, 정강섭, 조수영, 신동천, 장태우, 유명진, 2001, 지하수 중 방사성물질 함유실태에 관한 조사 연구(III), 국립환경과학원, p. 388.
  •  
  • 6. 성익환, 조병욱, 김대업, 김건한, 박덕원, 박중권, 윤윤열, 이봉주, 이병대, 이종철, 임현철, 정강섭, 조수영, 홍영국, 장우석, 양재하, 신동천, 한인섭, 2002, 지하수 중 방사성물질 함유실태에 관한 조사연구(IV), 국립환경과학원, p. 357.
  •  
  • 7. 신동천, 김예신, 문지영, 박화성, 김진용, 박선구, 2002, 지하수 중 자연방사성물질의 위해성 관리에 대한 고찰, 한국환경독성학회, 7(4), 273-284.
  •  
  • 8. 조병욱, 김건한, 김연기, 성익환, 안주성, 윤욱, 윤윤열, 이길용, 이병대, 이홍진, 임현철, 조수영, 홍영국, 2006, 지하수 중 방사성물질 함유실태 조사, 국립환경과학원, p. 200.
  •  
  • 9. 주승환, 제원묵, 1995, 라돈방사능과 생활환경, 계측문화사, 288 p.
  •  
  • 10. 홍영국, 홍세선, 2001, 국내 일부기반암의 유해 방사성 U, Th, K 함량연구, 2001대한자원환경지질학회, 한국자원공학회, 한국지구물리탐사학회, 대한지질학회춘계 공동학술발표회, p. 341-343.
  •  
  • 11. 한국지질자원연구원, 1:50,000 한국지질도.
  •  
  • 12. 한국지질자원연구원, 1:250,000 한국지질도.
  •  
  • 13. Banks, D., Frengstad, B., Midtgard, A.K., Krog, J.R., and Strand, T., 1998, The chemistry of Norwegian groundwaters: I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters, Science of the Total Environment, 222, 71-91.
  •  
  • 14. Frengstad, B., 2000, The chemistry of Norwegian groundwater III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques, Science of the Total environment, 246, 21-40.
  •  
  • 15. Huikuri, P., Salonen, L., and Raff, O., 1998, Removal of natural radionuclides from drinking water by point of entry reverse osmosis, Desalination, 119, 235-239.
  •  
  • 16. Kim, J.H., 1987, Caledonian Ogcheon Orogeny of Korea with special eference to the Ogcheon uraniferous marine black slate. KIGAM report.
  •  
  • 17. Kinner, N.E., Schell, G., Quern, P., and Lessard, C., 1988, Radon removal from drinking water using granular activated carbon, packed tower aeration and diffused bubble aeration techniques.
  •  
  • 18. Przylibski., T.A., Mamont-Ciesla., K., Kusyk., M., Dorda, J., and Kozlowska, B., 2004, Radon concentrationsin groundwaters of the Polish part of the Sudety Mountains (SW Poland), Journal of Environmental Radioactivity, 75, 193-209.
  •  
  • 19. USEPA, 1999, National primary drinking water regulations; Radon-222 Proposed rule, Federal Register, 64(211), FR 59246.
  •  
  • 20. USEPA, 2000, National primary drinking water regulations; Radon-222, Federal Register, 64(211).
  •  
  • 21. USEPA, 2003, National primary drinking water standards, Office of Water, EPA 816-F-03-016.
  •  
  • 22. USGS, 2000, Naturally occurring radionuclides in the ground water of southeastern Pennsylvania, USGS Fact Sheet 012-00.
  •  
  • 23. USGS, 2001, Uranium and radon in ground water in the Lower Illinois River Basin, Water-Resources Investigation Report 01-4056.
  •  

This Article