• A Modification of Water Table Fluctuation Model Considering Delayed Drainage Effect of Unsaturated Zone
  • Kim, Seong-Han;Park, Eun-Gyu;Kim, Yong-Sung;Kim, Nam-Jin;
  • HNS Engineering Inc.;Department of Geology, Kyungpook National University;Yooshin Engineering Corporation;Department of Geology, Kyungpook National University;
  • 비포화대 지연배수 효과를 고려한 지하수위 변동모델의 개선 및 적용
  • 김성한;박은규;김용성;김남진;
  • 한서엔지니어링;경북대학교 지질학과;(주)유신;경북대학교 지질학과;
Abstract
Recently, a physically based model of water-table fluctuation due to precipitation is developed based on aquifer water balance model. In the model, it was assumed that the water infiltration into ground surface is advection dominant and immediately reaches to water-table. The assumption may be suited for the sites where the water-table is shallow and/or the permeability of the unsaturated zone is high. However, there are more cases where the model is not directly applicable due to thick and low permeable unsaturated zone. For the low permeability unsaturated zone, the pattern of water flux passing through unsaturated zone is diffusive as well as advective. In this study, to improve the previously developed water-table fluctuation model, we combined the delayed drainage model, which has long been used in well hydraulics, to the water-table fluctuation model. To test the validity of the development, we apply the developed model to 5 different domestic sites. The model parameters are calibrated based on the groundwater hydrograph and the precipitation time series, and the correlation analyses among the parameters are pursued. The overall analyses on the delineated model parameters indicate that the delayed drainage parameters or delay index used in the developed model are able to reveal drainage information in the unsaturated zones.

Keywords: Water-table fluctuation;Delayed drainage;Unsaturated zone;Recharge rate;Water-table fluctuation model;

References
  • 1. 국가지하수정보센터, 2009, 광명철산 관측소 관측연보, http://www. gims.go.kr/.
  •  
  • 2. 국가지하수정보센터, 2009, 봉화명호 관측소 관측연보, http://www. gims.go.kr/.
  •  
  • 3. 국가지하수정보센터, 2009, 영주문정 관측소 관측연보, http://www. gims.go.kr/.
  •  
  • 4. 국가지하수정보센터, 2009, 함평신광 관측소 관측연보, http://www. gims.go.kr/.
  •  
  • 5. 국가지하수정보센터, 2009, 홍천홍천 관측소 관측연보, http://www. gims.go.kr/.
  •  
  • 6. 국토해양부, 2009, 함평 강우관측소 관측연보, http://www.wamis.go.kr/.
  •  
  • 7. 국토해양부, 1997-2001, 국가지하수관측망 설치공사 준공보고서.
  •  
  • 8. 기상청, 2009, 서울 기상연보, http://www.kma.go.kr/.
  •  
  • 9. 기상청, 2009, 봉화 기상연보, http://www.kma.go.kr/.
  •  
  • 10. 기상청, 2009, 영주 기상연보, http://www.kma.go.kr/.
  •  
  • 11. 기상청, 2009, 홍천 기상연보, http://www.kma.go.kr/.
  •  
  • 12. 구민호, 이대하, 2002, 지하수위 변동법에 의한 지하수 함양량 산정의 수치해석적 분석, 대한지질학회지, 38(3), 407-420.
  •  
  • 13. 김태희, 김용제, 이강근, 2006, 지하수 함양량 추정시 공간상에서의 자료 Sampling 방법에 따른 Minumum Entropy Deconvolution의 적용성에 관한 검토, 지하수토양환경학회지, 11(3), 52-58.
  •  
  • 14. 농촌진흥청, 2005, 세부 정밀토양도, http://asis.rda.go.kr/.
  •  
  • 15. 문상기, 우남칠, 2001, 누적강수량과 지하수위 곡선을 이용한 지하수 함양율 추정기법, 지하수토양환경학회지, 6(1), 33-43.
  •  
  • 16. 박은규, 2007, 강우에 의한 지하수위 변동 예측모델의 개발 및 적용, 지하수토양환경학회지, 12(4), 51-56.
  •  
  • 17. 조진욱, 박은규, 2008, 지하수위 변동 예측 및 비포화대 함수모델을 이용한 지하수 함양율 산정 연구, 지하수토양환경학회지, 13(1), 67-76.
  •  
  • 18. 최병수, 안중기, 1998, 지역단위 지하수 자연함양율 산정방법 연구, 지하수환경학회지, 5(2), 57-65.
  •  
  • 19. Bierkens, M.F.P., 1998, Modeling water table fluctuations by means of a stochastic differential equation, Water Resour. Res., 34(10), 2485-2499.
  •  
  • 20. Boulton, N.S., 1954, Unsteady radial flow to a pumped well allowing for delayed yield from storage, Intern. Assoc. Sci. Hydrol., Rome. Publ., 37, 472-477.
  •  
  • 21. Doherty, J., 2002, PEST: Model Independent Parameter Estimation, Water-mark Numerical Computing.
  •  
  • 22. Kasenow, M., 2006, Aquifer Test Data : Analysis and Evaluation, Water Resources Publication, p. 145-153.
  •  
  • 23. Knotters, M. and Bierkens, M.F.P., 2000, Physical basis of time series models for water table depths, Water Resour. Res., 36(1), 181-188.
  •  
  • 24. Moench, A.F., 1995, Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer, Ground Water, 33(3), 378-384.
  •  
  • 25. Moench, A.F., 1997, Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resour. Res., 33(6), 1397-1407.
  •  
  • 26. Neuman, S.P., 1972, Theory of flow in unconfined aquifers considering delayed response of the water table, Water Resour. Res., 8, 1031-1044.
  •  
  • 27. Neuman, S.P., 1974, Effects of partial penetration on flow in unconfined aquifers considering delayed aquifer response, Water Resour. Res., 10, 303-312.
  •  
  • 28. Park, E. and Parker, J.C., 2008, A simple model for water table fluctuations in response to precipitation, Journal of Hydrology, 356, 344-349.
  •  
  • 29. Rai, S.N. and Singh, R.N., 1995, Two-dimensional modelling of water table fluctuation in response to localized transient recharge, Journal of Hydrology, 167, 167-174.
  •  
  • 30. Rai, S.N. and Manglik, A., 1999, Modelling of water table variation in response to time-varying recharge from multiple basins using the linearised Boussinesq equation, Journal of Hydrology, 220, 141-148.
  •  
  • 31. Rasmussen, W.C. and Andreasen, G.E., 1959, Hydrologic Budget of the Beaverdam Creek Basin, Maryland, U. S. Geologic Survey Water-Supply Paper, 1472, 106 p.
  •  
  • 32. Sophocleous, M., 1991, Combining the soil water balance and water level fluctuation method to estimate natural groundwater recharge: Practical aspects, Journal of Hydrology, 124, 229-241.
  •  
  • 33. van Genuchten, M.T., 1980, A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898.
  •  

This Article