• Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches
  • Yoon, Hee-Sung;Bae, Gwang-Ok;Lee, Kang-Kun;
  • Korea Institute of Geoscience and Mineral Resources;School of Earth and Environmental Sciences, Seoul National University;School of Earth and Environmental Sciences, Seoul National University;
  • 통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가
  • 윤희성;배광옥;이강근;
  • 한국지질자원연구원;서울대학교 지구환경과학부;서울대학교 지구환경과학부;
Abstract
This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.

Keywords: Groundwater Quality Monitoring Network;Statistical approach;Groundwater quality grade;Degree of contamination;

References
  • 1. 강진희, 박은규, 2010, DRASTIC과 SINTACS 모델의 비교적용에 의한 부여읍 일대의 지하수 오염 취약성 평가, 지하수토양환경, 15(5), 32-39.
  •  
  • 2. 박정구, 김락현, 이진용, 최동혁, 김태동, 2007, 우리나라 지하수 수질측정망 현황 평가 및 개선을 위한 고찰, 지하수토양환경, 12(6), 92-99.
  •  
  • 3. 안주성, 고경석, 전철민, 2007, 국내 지하수의 비소산출양상, 지하수토양환경, 12(5), 64-72.
  •  
  • 4. 이병대, 윤욱, 성익환, 2007, 울산지역 토지이용도에 따른 지하수 수질 및 오염특성, 지하수토양환경, 12(6), 78-91.
  •  
  • 5. 이사로, 김윤종, 1996, DRASTIC SYSTEM을 이용한 지하수 오염 가능성 및 위험 분석 연구, 한국GIS학회, 4(1), 1-11.
  •  
  • 6. 이진용, 이명재, 이재명, 안경환, 원종호, 문상호, 조민조, 2006, 국가 지하수관측소 지하수위, 전기전도도 및 수온자료에 대한 모수적 및 비모수적 변동 경향성 분석, 지하수토양환경, 11(2), 56-67.
  •  
  • 7. 이현주, 박은규, 김강주, 박기훈, 2008, DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가, 지하수토양환경, 13(1), 77-91.
  •  
  • 8. 최현미, 이진용, 2009, 제주도 지하수 관측망 수위에 대한 모수 및 비모수 변동경향 분석, 지하수토양환경, 14(5), 41-50.
  •  
  • 9. 한정상, 1998, 지하수환경과 오염, 박영사, 서울, p. 1017.
  •  
  • 10. 환경부, 2008, 2007년 지하수 수질측정망 운영결과, 환경부.
  •  
  • 11. 환경부, 2009, 2008년 지하수 수질측정망 운영결과, 환경부.
  •  
  • 12. 함세영, 정재열, 김무진, 김인수, 황한석, 2004, DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가, 자원환경지질, 37(6), 631-645.
  •  
  • 13. Al-Amoush, H., Hammouri, N.A., Zunic, F., and Salameh, 2010, Intrinsic vulnerability assessment for the alluvial aquifer in the northern part of Jordan Valley, Water Resour. Manage., 24(13), 3461-3485.
  •  
  • 14. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J., and Hackett, G., 1987, DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. EPA/600/2-87/035, US Environmental Protection Agency, Washington, DC, p. 455.
  •  
  • 15. Babiker I.S., Mohamed, A.A., Mohamed, Hiyama, T., and Kato, K., 2005, A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, Sci. Total Environ., 345(1-3), 127-140.
  •  
  • 16. Backman, B., Bodis, D., Lahermo, P., Rapant, S., and Tarvainen, T., 1998, Application of a groundwater contamination index in Finland and Slovakia, Environ. Geol., 36(1-2) 55-64.
  •  
  • 17. Civita, M., 1994, Vulnerability maps of aquifer subjected to pollution: theory and practice (in Italian), Pitagora Editrice, Bologna.
  •  
  • 18. D'Alessandro, W., Bellomo, S., Bonfanti, P., Brusca, L., and Longo, M., 2010, Salinity variations in the water resources fed by the Etnean volcanic aquifers (Sicily, Italy): natural vs. anthropogenic causes, Environ. Monit. Assess., Article in press.
  •  
  • 19. Edet, A.E., 2004, Vulnerability evaluation of a coastal plain sand aquifer with a case example from Calabar, southeastern Nigeria, Environ. Geol., 45(8), 1062-1070.
  •  
  • 20. Foster, S.D.D., 1987, Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, In: van Duijvenbooden, W., van Waegeningh, H.G. (Eds.), Vulnerability of soils and groundwater to pollution, TNO Committee on Hydrological Research, The Hague, Proceedings and information, 38, 69-86.
  •  
  • 21. Gilbert, R.O., 1987, Statistical methods for environmental pollution monitoring, Van Nostrand Reinhold, New York, NY, p. 320.
  •  
  • 22. Gomezdelcampo, E. and Dickerson, J.R., 2008, A modified DRASTIC model for siting confined animal feeding operations in Williams County, Ohio, USA, Environ. Geol., 55(8), 1821-1832.
  •  
  • 23. Guo, Q., Wang, Y., Gao, X., and Ma, T., 2007, A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China, Environ. Geol., 52(5), 923-932.
  •  
  • 24. Lee, J.Y., Moon, S.H., and Lee, K.K., 2007, Determining the condition of groundwater in evaluating the need for corrective measures: a case for the national groundwater-monitoring network in South Korea, Hydrogeol. J., 16(1), 123-137.
  •  
  • 25. Maurice, G. and Kendall, Sc.D., 1955, Rank correlation methods, Hafner Publishing Company, New York, NY, p. 196.
  •  
  • 26. Mendoza, J.A. and Barmen, G., 2006, Assessment of groundwater vulnerability in the Rio Artiguas basin, Nicaragua, Environ. Geol., 50(4), 569-580.
  •  
  • 27. Naftz, D.L., Bullen, T.D., Stolp, B.J., Wilkowske, C.D., 2008, Utilizing geochemical, hydrological, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah, Sci. Total Envion., 391(1), 1-11.
  •  
  • 28. Pusatli, O.T., Camur, M.Z., and Yazicigil, H., 2009, Susceptibility indexing method for irrigation water management planning: Applications to K. Menderes river basin, Turkey, J. Environ. Manage., 90(1), 341-347.
  •  
  • 29. Rapant, S., Raposova, M., Bodis, D., Marsina, K., and Slaninka, I., 1999, Environmental-geochemical mapping program in the Slovak Republic, J. Geochem. Explor., 66(1-2), 151-158.
  •  
  • 30. Sen, P.K., 1968, Estimate of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379-1389.
  •  
  • 31. Sinan M. and Razack, M., 2009, An extension to the DRASTIC model to assess groundwater vulnerability to pollution: application to the Haouz aquifer of Marrakech (Morocco), Environ. Geol., 57(2), 349-363.
  •  
  • 32. Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R.R., Chidambaram, S., Anandhan, P., Manivannan, R., and Vasudevan S., 2010, Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India, Environ. Monit. Assess., 171(1-4), 595-609.
  •  
  • 33. Wen, X., Wu, J., and Si, J., 2009, A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China, Environ. Geol., 57(6), 1435-1442.
  •  
  • 34. Yu, C., Yao, Y., Hayes, G., Zhang, B., and Zheng, C., 2010, Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China, Sci. Total Environ., 408(24), 6108-6116.
  •  

This Article