• The Rate of Superoxide Radical (${O_2}^-$.) Production in Normal Fenton's Reagent at Different pHs
  • 펜톤반응에서 pH의 변화에 따른 superoxide radical (${O_2}^-$.)의 생성
  • 김용수;공성호;김재호;
  • 한양대학교 화학공학과;한양대학교 화학공학과;대한석탄공사 기술연구소;
Abstract
In normal Fenton's reagent, the reductive mechanism of carbon tetrachloride (CT) with superoxide radical (${O_2}^-$.) was observed and the rate of ${O_2}^-$. production was investigated as a function of $H_2O$$_2$ concentration and pH. As pH was increased, the rate of 1-hexanol degradation was rapidly decreased from 90% (at pH 3) to 5% (at pH 11). On the other hand, more degradation of carbon tetrachloride was observed at higher pH regimes indicating Fenton's reaction is an oxidant-reductant co-existing system at neutral pHs. The rate of $O_2^{-}$ . production was observed at different $H_2$$O_2$ concentrations and at different pHs. The rate increased from (45.3$\pm$7.8) x $10^{-6}$ M/s to (151.0$\pm$26.2) x $10^{-6}$ M/s ($294mM H_2$$O_2$) at pH 11: the rate 3150 increased from (22.1$\pm$3.8) x $10^{-6}$ M/s at pH 7 to (151.0$\pm$26.2) x $^10{-6}$ M/s at pH 11 with 294mM $H_2$$O_2$, These results showed that Fenton's reagent could be applied at wide pH regimes. Especially, carbon tetrachloride, which can not be easily adsorbed to soils and then can be dissolved into groundwater causing a cancer, could be efficiently treated by Fenton's reagent.reagent.

전통적인 펜톤반응에서 Superoxide radical (${O_2}^-$.)에 의한 사염화탄소의 환원반응을 조사하였으며 과산화수소의 농도구배와 pH의 변화에 따른 ${O_2}^-$.의 생성률을 측정하였다. 펜톤반응에서 1-헥산올의 분해율은 pH가 증가함에 따라 90% (pH3) 에서 5% (pH5) 급격하게 감소한 반면 사염화탄소의 분해율은 pH가 증가함에 따라서 증가하였다. 이러한 결과는 펜톤반응이 Hydroxyl radical (${O_2}^-$.)의 산화반응과 ${O_2}^-$.의 환원반응이 공존하는 반응임을 보이는 결과이다. ${O_2}^-$.의 생성률은 pH 11에서 $H_2$O$_2$의 농도가 29.4mM에서 294mM로 증가함에 따라 (45.3$\pm$7.8) X $10^{-6}$ M/s에서 (151.0$\pm$26.2) X $10^{v}$ / M/s로 증가하였으며 294mM의 H$_2$$O_2$에서 pH가 7에서 11로 증가함에 따라 (22.1$\pm$3.8) x $10^{-6}$ / M/s에서 (151.0$\pm$26.2) x $10^{-6}$ M/s 증가하였다. 이러한 결과는 ${O_2}^-$.의 환원력을 적용한 펜톤반응이 넓은 pH영역에서 적용될 수 있음을 나타내는 결과이다. 특별히 토양내 흡착력이 약하고 지하수내에 쉽게 용해될 수 있으며 독성 및 발암성물질로 알려진 사염화탄소와 같은 염소계 유기화합물의 제거에 효과적으로 적용될 수 있을 것으로 사료된다.

Keywords: superoxide radical;Fenton's reagent;carbon tetrachloride;hydroxyl radicals;

Keywords: 초과산화라디칼;펜톤반응;사염화탄소;수산화라디칼;

References
  • 1. Y. Xu, Chmosphere, 43,1103 (2001)
  •  
  • 2. E.L. Michele and A.T. Matthew, Chemosphere, 41,409 (2000)
  •  
  • 3. R.J. Watts, B.C. Bottenberg, T.F. Hess, M.D. Jensen, and A.L. Teel, Environ. Sci.Technol., 33,3432 (1999)
  •  
  • 4. C. Walling and T. Weil, J. Chem. Kinet., 6,507 (1974)
  •  
  • 5. J. Lind, G. Merenyi, and T.E. Eiiksen, J. Am. Chem. Soc.105, 7655(1983)
  •  
  • 6. M. Benrahmoune, P. Erond, and Z. Abedinzadeh, Free Radical Biotogy & Medicine 29, 775 (2000)
  •  
  • 7. K. Fukuhara and Y. Hara, I. Nakanishi, and N. Miyata, Chem. Pharm. Bull. 48, 1532 (2000)
  •  
  • 8. L. R. Julian and T.S. Donal, J. Am. Chem. Soc. 103, 712 (1981)
  •  
  • 9. R. Poupko and I. Rosenthal, J. Phy. Chem. 88, 2320 (1984)
  •  
  • 10. E. A. Khalil, L. S. David, and A.R. Flegal, Marine Chemistry 69, 33(2000)
  •  
  • 11. B. H. Beilski, G. G. Shiue, and S. Bajuk, J. Am. Chem. Soc. 84, 830 (1980)
  •  
  • 12. J. L. Roberts and D. T. Sawyer, J. Am. Chem. Soc. 103, 712(1981)
  •  
  • 13. G. Merenyi, J. Lind, and T. E. Eriksen, J. Am. Chem. Soc., 103,712 (1984)
  •  
  • 14. R. Zepp, B. C. Faust and J. Hoigne, Environ. Sci. Technol. 26, 313 (1992)
  •  
  • 15. D. James and B. H. Bielski, J. Am. Chem. Soc. 89, 5062 (1985)
  •  

This Article

  • 2002; 7(2): 73-81

    Published on Jun 1, 2002