Laboratory scale experiments to remove benzene in solution by using the bio-carrier composed of dead biomass have been performed. The immobilized bio-carrier with dead Bacillus drentensis sp. and polysulfone was manufactured as the biosorbent. Batch sorption experiments were performed with bio-carriers having various quantities of biomass and then, their removal efficiencies and uptake capacities were calculated. From results of batch experiments, 98.0% of the initial benzene (1 mg/L) in 1 liter of solution was removed by using 40 g of immobilized bio-carrier containing 5% biomass within 1 hour and the biosorption reaction reached in equilibrium within 2 hours. Benzene removal efficiency slightly increased (99.0 to
$99.4%{\pm}0.05$) as the temperature increased from 15 to
$35^{\circ}C$, suggesting that the temperature rarely affects on the removal efficiency of the bio-carrier. The removal efficiency changed under the different initial benzene concentration in solution and benzene removal efficiency of the bio-carrier increased with the increase of the initial benzene concentration (0.001 to 10 mg/L). More than 99.0% of benzene was removed from solution when the initial benzene concentration ranged from 1 to 10 mg/L. From results of fitting process for batch experimental data to Langmuir and Freundlich isotherms, the removal isotherms of benzene were more well fitted to Freundlich model (
$r^2$=0.9242) rather than Langmuir model (
$r^2$=0.7453). From the column experiment, the benzene removal efficiency maintained over 99.0% until 420 pore volumes of benzene solution (initial benzene concentration: 1 mg/L) were injected in the column packed with bio-carriers, investigating that the immobilized carrier containing Bacillus drentensis sp. and polysulfone is the outstanding biosorbent to remove benzene in solution.
Keywords: Bacillus sp.;Biosorption;Benzene;Bio-carrier;Polysulfone;