• Effect of Soil Micro-environments on the Remediation Efficiency of Contaminated Soil and Groundwater: Review and Case Study
  • Shim, Moo Joon;Yang, Jung-Seok;Lee, Mi Jung;Lee, Giehyeon;Park, Jae Seon;Kim, Guk Jin;Min, Sang Yoon;Kim, Joo Young;Choi, Min Joo;Kim, Min Chan;Lim, Jong Hwan;Kwon, Man Jae;
  • Korea Institute of Science and Technology (KIST);Korea Institute of Science and Technology (KIST);Korea Institute of Science and Technology (KIST);Yonsei University;Yonsei University;OIKOS CO., Ltd.;OIKOS CO., Ltd.;Dong Myung Co., Ltd.;Dong Myung Co., Ltd.;Dong Myung Co., Ltd.;Dong Myung Co., Ltd.;Korea Institute of Science and Technology (KIST);
  • 토양지하수 미세환경과 오염정화효율과의 상관성 고찰
  • 심무준;양중석;이미정;이기현;박재선;김국진;민상윤;김주영;최민주;김민찬;임종환;권만재;
  • 한국과학기술연구원;한국과학기술연구원;한국과학기술연구원;연세대학교;연세대학교;(주)오이코스;(주)오이코스;(주)동명엔터프라이즈;(주)동명엔터프라이즈;(주)동명엔터프라이즈;(주)동명엔터프라이즈;한국과학기술연구원;
Abstract
A variety of physical, chemical, and microbiological techniques have been developed to deal with soil and groundwater contamination. However, in the presence of the large portion of soil micro-environments, contaminant rebound and/or tailing have been frequently reported. Case study of total petroleum hydrocarbons (TPH) removal by full-scale land farming showed that contaminant rebound and/or tailing occurred in 9 out of total 21 cases and subsequently resulted in problems of a long term operation to satisfy TPH guidelines of contaminated soil and groundwater. The main cause of contaminant rebound and tailing is considered to be the strong interactions between contaminants and micro-environments including micro-particles, micro-pores, and organic matter. Thus, this study reviewed the effects of soil micro-environments of soil and groundwater on the removal efficiency for both heavy metals and petroleum contaminants. In addition, the various methods of sampling, analysis, and assessment of soil micro-environments were evaluated. Thorough understanding of the effects of soil micro-environments on contaminant removal will be essential to achieve a cost-effective and efficient solution to contaminated sites.

산업화의 영향으로 발생한 토양 지하수 내 중금속 및 유류 오염정화를 위해 다양한 시도가 이루어지고 있다. 그러나 미세토양이 상대적으로 많이 포함되어 있는 오염토양 정화시 오염물질의 rebound나 tailing 현상이 발생되어 정화기간이 장기화 되어왔다. 이러한 문제점은 미세토양과 미세공극이 존재하는 미세환경과 오염물질의 각각의 특성, 존재형태, 그리고 상호간의 다양한 반응 등으로부터 기인한다고 보고되었다. 따라서, 본 연구에서는 토양 지하수 미세환경과 오염정화 효율성과의 상관성에 대해 고찰하고 미세환경의 샘플링, 분석, 평가 기법을 소개 및 제안하며, 이를 활용한 오염정화효율 향상과 최적의 정화공법선정을 위한 정보를 제공하고자 하였다. 오염토양의 물리 화학 생물학적 특성 그리고 오염물질 종류 및 특성에 따른 정밀 평가를 통해 특정 정화공법 적용시 달성 가능한 정화기간과 정화수준을 예상할 수 있을 것이다. 따라서, 미세환경의 정밀 분석, 평가 기술을 바탕으로 정화 기술의 효율성과 타당성 검토가 가능할 것으로 판단되며 오염된 토양 지하수 복원을 위한 최적의 정화공법을 선정하는 기초자료로써 활용될 수 있을 것으로 사료된다.

Keywords: Soil and Groundwater;Micro-environments;Remediation;Contaminant rebound;Tailing;

References
  • 1. Abumaizar, R.J. and Edward, H.S., 1999, Heavy metal contaminants removal by soil washing, J. Hazard. Mater., 70, 71-86.
  •  
  • 2. Abdel-Moghny, Th., Mohamed, R.S.A., El-Sayed, E., Aly, S.M., and Snousy, M.G., 2012, Effec tof soil texture on remediation of hydrocarbons-contaminated soil at El-Minia district, upper Egypt, ISRN Chem. ENG., 2012, 1-13.
  •  
  • 3. Arshad, M.A. and Martin, S., 2002, Identifying critical limits for soil quality indicators in agro-ecosystems, Agr. Ecosyst. Environ., 88, 153-160.
  •  
  • 4. Baek, K., Kim, D.-H., Seo, C.-I., Yang, J.-S., and Lee, J.-Y., 2007, Remediation of Pb-contaminated soil by soil washing using hydrochloric acid, J. Soil Groundw. Environ., 12(3), 17-22.
  •  
  • 5. Blott, S.J. and Pye, K., 2012, Particle size scales and classifica tion of sediment types based on particle size distributions:Review and recommended procedures, Sedimentology, 59, 2071-2096.
  •  
  • 6. Boyd, S.A., Sheng, G., Teppen, B.J., and Johnson, C.T., 2001, Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays, Environ. Sci. Technol., 35, 4227-4324.
  •  
  • 7. Brusseau, M.L., Jessup, R.E., and Rao, P.S.C., 1991, Nonequilibrium sorption of organicchemicals-elucidation of rate-limiting processes, Environ. Sci. Technol., 25, 134-142.
  •  
  • 8. Busch-Harris, J., Sublette, K., Roberts, K.P., Landrum, C., Peacock, A.D., Davis, G., Ogles, D., Holmes, W.E., Harris, D., Ota, C., Yang, X., and Kolhatkar, A., 2008, Bio-Traps Coupled with Molecular Biological Methods and Stable Isotope Probing Demonstrate the In Situ Biodegradation Potential of MTBE and TBA in Gasoline-Contaminated Aquifers, Ground Water Monit. R., 28(4), 1745-6592.
  •  
  • 9. Chen, W.-R. and Huang, C.-H., 2012, Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides, J. Hazard. Mater., 227-228, 378-385.
  •  
  • 10. Choi, J., 2006, Laboratory study on the removal of heavy metals using apatite for stabilization of tailings at the Ulsan abandoned iron mine, J. Soil Groundw. Environ., 11(4), 1-9.
  •  
  • 11. Clapp, R.B. and Hornberger, G.M., 1978, Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601-604.
  •  
  • 12. Cline, S.R. and Reed, B.R., 1995, Lead removal from soils via bench-scale soil washing techniques, J. Environ. Eng., 121, 700-705.
  •  
  • 13. Cho, C.-H. and Sung, K.-J., 2013, The characteristics of shallow groundwater in petroleum contaminated site and the assessment of efficiency of biopile by off-gas analysis, J. Soil Groundw. Environ., 18(2), 36-44.
  •  
  • 14. Corwin, D.L. and Lesch, S.M., 2003, Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines, Agron. J., 95(3), 455-471.
  •  
  • 15. Davison, W. and Zhang, H., 1994, In situ speciation measurements of trace components in natural waters using thin-film gels, Nature, 367, 546-548.
  •  
  • 16. Dermont, G., Bergeron, M., Mercier, G., and Richer-Lefleche, M., 2008, Soil washing for metal removal: A review of physical/chemical technologies and field applications, J. Hazard. Mater., 152, 1-31.
  •  
  • 17. Doran, J.W. and T.B. Parkin., 1996, Quantitative indicators of soil quality: a minimum data set. In J.W. Doran and A.J. Jones, eds. Methods for Assessing Soil Quality. SSSA, Inc., Madison, Wisconsin, USA.
  •  
  • 18. Environmental Security Technology Certification Program (ESTCP), 1999, Technology Status Review In Situ Oxidation, USA.
  •  
  • 19. Fitz, W.J., Wenzel, W.W., Z hang, H., Nurmi, J., Kllenssperger, G., Stipek, K., Ficherova, Z., Schweiger, P., Ma, L.O., and Stingeder, G.J., 2003, Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring techniques for its use in phytoextraction, Env. Sci. Technol., 37, 5008-5014.
  •  
  • 20. Giergiczny, Z. and Krol, A., 2008, Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites, J. Hazard. Mater., 160, 247-255.
  •  
  • 21. Han, S.-J. and Kim, S.-S., 2001, The charactersistics of pH variations and lead transport during electrokinetic remediation of soil contaminated by heavy metals, J. Soil Groundw. Environ., 6(4), 13-23.
  •  
  • 22. Hansen, H.K., Rojo, A., and Ottosen, L.M., 2005, Electrodialytic remediation of copper mine tailings, J. Hazard. Mater., 117, 179-183.
  •  
  • 23. Hatzinger, P.B. and Alexander, M., 1995, Effect of aging of chemicals in soil on their biodegradibility and extractibility, Environ. Sci. Technol., 29, 537-545.
  •  
  • 24. Hernndez-Espri, A., Snchez-Len, E., Martnez-Santos, P., and Torres, L.G., 2013, Remediation of a diesel-contaminated soil from a pipeline accidental spill: enhanced biodegradation and soil washing processes using natural gums and surfactants, J. Soil. Sediment., 13, 152-165.
  •  
  • 25. Hong, S.H., Lee, S.M., and Lee, E.Y., 2011, Bioremediation efficiency in oil contaminated soil using microbial agents, Korean J. Microbiol. Biotechnol., 39(3), 301-307.
  •  
  • 26. Hwang, J.-S. and Choi, S.-I., and Han, S.-G., 2005, Sequential washing techniques for arsenic-contaminated soils near the abandoned iron-mine, J. Soil Groundw. Environ., 10(1), 58-64.
  •  
  • 27. ISO 14688, 2002, Geotechnical Investigation and Testing-Identification and Classification of Soil. Part 1: Identification and Description. International Organization for Standardization, Geneva.
  •  
  • 28. ISO 17313, 2004, Soil quality-Determination of hydraulic conductivity of satuarated porous materials using a flexible wall permeameter. International Organization for Standardization, Geneva.
  •  
  • 29. Jeong, Y., Fan, M., Singh, S., Chuang, C.-L., Saha, B., and Hans van Leeuwen, J., 2007, Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents, Chem. Eng. Prog., 46, 1030-1039.
  •  
  • 30. Kim, N., Kim, I., Choi, A., and Lee, M., 2006, Study on the contamination of in-situ chemical oxidation method by using hydrogen peroxide with the air-spaging method for diesel contaminated soil and groundwater, J. Soil Groundw. Environ., 11(6), 8-17.
  •  
  • 31. Ko, I., Lee, C.-H., Lee, K.-P., and Kim, K.-W., 2004, Remedia tion of soils contaminated with arsenic and heavy metals by soil washing, J. Soil Groundw. Environ., 9(4), 52-61.
  •  
  • 32. Ko, S.-J., Yun, J.-H., Song, Y.-C., Kim, D.-G., and Chung, H.-S., 2005, A study on removal of heavy metal from contaminated sediment via bioleaching, Proceeding of Korean Society of Marine Environment and Safety Spring Meeting, p. 119-122.
  •  
  • 33. Korean Society of Soil and Groundwater Environment, 2003, Soil Environmental Engineering, Hyang Moon Co. Seoul, 394 p.
  •  
  • 34. Laha, S., Tansel, B., and Ussawarujikulchai, A., 2009, Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: A review, J. Environ. Manage., 90, 95-100.
  •  
  • 35. Lee, H.-H., Baek, K., and Yang, J.-W., 2003, A new circulation method for electrokinetic remediation of soil contaminated with lead, J. Soil Groundw. Environ., 8(1), 9-16.
  •  
  • 36. Lee, J.-Y., Kim, Y.-S., Kwon, Y.-H., Kong, S.-H, Park, S.-Y., Lee, C.-H, and Sung, H.-R., 2004, A study of heavy metal contaminated soil remediation with a EDTA and boric acid composite(I): Pb, J. Soil Groundw. Environ., 9(4), 1-7.
  •  
  • 37. Lee, S.-H., Kim, E.-Y., Seo, S.-K., Kim, G.-B., Kim, J.-H., and Lee, J.K., 2008, Remediation of heavy metal contamination in OBOD site with soil washing: Selection of extractants, J. Soil Groundw. Environ., 13(2), 44-53.
  •  
  • 38. Li, Z., Yu, J.W., and Neretnieks, L., 1997, Removal of Pb(II), Cd(II) and Cr(II) from sand by electromigration, J. Hazard. Mater., 55, 295-304.
  •  
  • 39. Louchart, X. and Voltz, M., 2007, Aging effect on the availability of herbicides to runoff transfer, Environ. Sci. Technol., 41, 1137-1144.
  •  
  • 40. Malviya, R. and Chaudhary, R., 2004, Study of treatment effectiveness of solidfication/stabilization process for waste bearing heavy metals, J. Mater. Cyc., 6, 147-153.
  •  
  • 41. Mitsunobu, S., Shiraishi, F., Makita, H., Orcutt, B.N., Kikuchi, S., Jorgensen, B.B., and Takahashi, Y., 2012, Bacteriogenic Fe(III) (Oxyhydr)oxides characterized by synchrotron micropobe coupled with spatially resolved phylogenetic analysis, Environ. Sci. Technol., 46, 3304-3311.
  •  
  • 42. Mulligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, Surfactantenhanced remediation of contaminated soil: a review, Eng. Geol., 60, 371-380.
  •  
  • 43. Murdoch, C., Kelly, M., Chang, L.-Y., Davison, W., and Zhang, H., 2001, DGT as an in situ tool for measuring radio-cesium in natural waters, Environ. Sci. Technol., 35, 4530-4535.
  •  
  • 44. Nam, Y.H., Park, I.S., and Park, J.W., 2009, A study on remediation of petroleum-contaminated soil using chemical oxidation, Korean Geo-Environment Society, Proceedings of the autumn annual meeting, 405-413.
  •  
  • 45. Oh, S., Oh, C., Kim, K., Seok S., Kim, C., Lim, J., Ryu J., and Chang, Y., 2012, Evaluation of Remediation Efficiency of In-Situ Chemical Oxidation Technology Applying Micro Bubble Ozone Oxidizer Coupled with Pneumatic Fracturing Equipment, J. Soil Groundw. Environ., 17(4), 44-50
  •  
  • 46. Park, S.W., Lee, J.Y., Kwon, T.S., Kim, K.J., Chung, K.Y., and Baek K.T., 2009, Feasibility study on the remediation of Zncontaminated railroad soil using various ashing agents, J. Soil Groundw. Environ., 14(1), 78-82.
  •  
  • 47. Rauret, G., Lopez-Sanchez, J.-F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A.M., Davison, C.M., Gomez, A., Luck, D., Bacon, J., Yli-Hala, M., Muntau, H., and Quevauviler, Ph., 2000, Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metals contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-stability study of acetic acid and EDTA extractable metal content, J. Environ. Monit., 2, 228-233.
  •  
  • 48. Seo, S.-K., Lee, S.-H, Son, J.-H., and Chang, Y.-Y., 2008, Application of a full scale soil washing process for the remediation of contaminated soil around an abandoned mine, J. Soil Groundw. Environ., 13(2), 70-75.
  •  
  • 49. Smith, J.L. and Doran, J.W., 1996, Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for assessing soil quality, Soil Science Society of America Special Publication 49, 169-182.
  •  
  • 50. Sullivan, D.M., 2003, Mineralizable nitrogen in soil: Methods and interpretations. Western Nutrient Management Conference. 5, 28
  •  
  • 51. Teasdale, P.R., Hayward, S., and Davison, W., 1999, In situ, high resolution measurement of dissolved sulfide using diffusive gradients in thin-films with computer-imaging densitometry, Anal. Chem., 71, 2186-2191.
  •  
  • 52. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51(7), 844-851.
  •  
  • 53. Thiruvenkatachari, R., Vigneswaran, S., and Naidu, R., 2008, Permeable reactive barrier for groundwater remediation, J. Ind. Eng. Chem., 14, 145-156.
  •  
  • 54. USEPA, 2001, A Citizen's Guide to Chemical Oxidation, EPA 542-F-01-013, April 2001, Washington, DC.
  •  
  • 55. Wang, M., Wu1, S., and Kuol, C., 2007, Modeling for the rebound of contaminant concentrations insubsurface gaseous phase during intermittent soil vapor extraction operation, J. Environ. Eng. Manage., 17(1), 11-19
  •  
  • 56. Watts, R.J., 1997, Hazardous wastes, John Wiley & Sons, Inc, New York, NY, 764 p.
  •  
  • 57. Zhang, H., Davison, W., Miller, S., and Tych, W., 1995, In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Ac., 59(20), 4182-4192.
  •  
  • 58. Zhao, Q., Li, P., Stagnitti, F., Ye, J., Dong, D., Zhang, Y., and Li, P., 2009, Effects of aging and freeze-thawing on extractability of pyrene in soil, Chemosphere, 76, 447-452.
  •  

This Article

  • 2014; 19(1): 34-45

    Published on Feb 28, 2014

  • 10.7857/JSGE.2014.19.1.034
  • Received on Nov 25, 2013
  • Revised on Jan 15, 2014
  • Accepted on Jan 15, 2014