• Comparison of Particle-Size Distribution Models for Estimating Water Retention Characteristic
  • 토양수분특성 추정을 위한 입자크기분포 모형들의 비교
  • 황상일;
  • 미국 클락슨대학교 토목환경공학과;
Abstract
Knowledge of soil water retention characteristic is essential for many problems involving water flow and organic solute transport in unsaturated soils. A physico-empirical approach based on the translation of the particle-size distribution (PSD) into a corresponding water retention curve has been accomplished by others using the concept that the pore-size distribution is directly related to PSD. This approach implies that details of a PSD curve may affect the estimation of water retention characteristic (WRC). To determine whether the WRC estimation using the Arya-Paris model could be affected by the selection of a PSD model, four PSD models with one to four fitting parameters were used. The Jaky model with only one fitting parameter had greater WRC estimation ability than other models with greater number of fitting parameters. The better performance of the Jaky model may be explained by the effect of soil structure in field soils.

불포화토양내 물의 흐름과 유기오염물질의 이동현상을 예측하기 위해서는 불포화토양의 토양수분곡선을 구하는 것이 필수적이다. 입자크기분포로부터 토양수분곡선을 직접 구하는 물리경험적 방법이 많은 연구자들에 의해 제안되고 적용되어왔다. 이 방법은 공극크기분포가 직접적으로 입자크기분포와 상호 연관되어있다는 개념을 이용한 것으로, 입자크기분포곡선을 산정하는 방법이 토양수분곡선추정에 영향을 미칠 수 있다는 것을 의미한다. 본 연구에서는 Arya-Paris 모형을 이용한 토양수분곡선 추정이 어떠한 입자크기분포모형을 선택하는가에 따라 영향을 받는지를 알아보고자 하였다. 1∼4의 추정변수를 갖는 4개의 입자분포곡선 모형을 사용한 결과 단지 1개의 추정변수를 갖는 Jaky모형이 더 많은 추정변수를 가진 모형보다 토양수분곡선을 잘 예측하였다. Jaky모형의 우월한 예측력은 아마도 현장토양이 가지는 구조적 특성 때문인 것으로 사료된다.

Keywords: Particle-size distribution;water retention characteristic;Arya-Paris model;Jaky model;

Keywords: 입자크기분포;토양수분곡선;Arya-Paris모형;Jaky모형;

References
  • 1. Rawls, W.J., Gish, T.J., and Brakensiek, D.L. 'Estimating soil water retention from soil physical properties and characteristics' , Adv. Soil Sci., 16, pp213-234(1991)
  •  
  • 2. Williams, R.D., Ahuja, L.R., and Naney, J.W. 'Comparisons of methods to estimate soil water characteristics from soil particle-size distribution, bulk density, and limited data' , Soil Sci., 153, pp172-184(1992)
  •  
  • 3. Tietje, O., and Tapkenhinrichs, M. 'Evaluation of pedo-transfer functions', Soil Sci. Soc. Am. J., 57, pp1088-1095(1993)
  •  
  • 4. Kern, J.S. 'Evaluation of soil water retention models based on basic soil physical properties', Soil Sci. Soc. Am. J., 59, pp1134-1141(1995)
  •  
  • 5. Arya, L.M., and Paris, J.F. 'A physicoempirical model to predict the soil moisture characteristic from particlesize distribution and bulk density data' , Soil Sci. Soc. Am. J., 45, pp1023-1030(1981)
  •  
  • 6. Havercamp, R., and Parlange, J.Y. 'Predicting the water-retention curve from a particle-size distribution: 1. Sandy soils without organic matter' , Soil. Sci., 142, pp325-339(1986)
  •  
  • 7. Arya, L.M., Leij, F.J., van Genuchten M.Th., and Shouse, P.J. 'Scaling parameter to predict the soil water characteristic from particle-size distribution data' , Soil Sci. Soc. Am. J., 63, pp510-519(1999)
  •  
  • 8. Zhuang, J., Jin, Y., and Miyazaki, T. 'Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept' , Soil Sci., 166, pp308-321 (2001)
  •  
  • 9. Hwang, S.I., Lee, K.P., Lee, D.S., and Powers, S. E. 'Models for estimating soil particle-size distributions', Soil Sci. Soc. Am. J., 66, pp1143-1150(2002)
  •  
  • 10. Van Genuchten, M.Th. 'A closed-form equation for predicting the hydraulic conductivity of unsaturated soils', Soil Sci. Soc. Am. J., 44, pp892-898(1980)
  •  
  • 11. Buchan, G.D., Grewal, K.S., and Robson, A.B. 'Improved models of particle-size distribution: An illustration of model comparison techniques', Soil Sci. Soc. Am. J., 57, pp901-908(1993)
  •  
  • 12. Fredlund, M.D., Fredlund, D.G., and Wilson, G.W. 'An equation to represent grain-size distribution', Can. Geotech. J.,37, pp817-827(2000)
  •  
  • 13. Nemes, A., Wosten, J.H.M., Lilly, A., and Voshaar, J.H.O. 'Evaluation of different procedures to interpolate particle-size distributions to achieve compatibility within soil databases', Geoderma, 90, pp187-202(1999)
  •  
  • 14. Bittelli, M., Campbell, G.S., and Flury, M. 'Characterization of particle-size distribution in soils with a fragmentation model' , Soil Sci. Soc. Am. J., 63, pp782-788(1999)
  •  
  • 15. Skaggs, T.H., Arya, L.M., Shouse, P.J., and Mohanty, B.P. 'Estimating particle-size distribution from limited soil texture data', Soil Sci. Soc. Am. J., 65, pp1038-1044(2001)
  •  
  • 16. Jaky, J., Soil mechanics, Egyetemi Nyomda, Budapest(1944). (In Hungarian)
  •  
  • 17. Buchan, G.D. 'Applicability of the simple lognormal model to particle-size distribution in soils' , Soil Sci., 147, pp155-161(1989)
  •  
  • 18. Nemes, A., Schaap, M.G, Leij, F.J., and Wosten, J.H.M. 'Description of the unsaturated soil hydraulic database UNSODA version 2.0', J. Hydrol., 251, pp151-162(2001)
  •  
  • 19. Nimmo, l.R. 'Predicting soil-water retention and hydraulic conductivity from textural and structural information' , Proc. Int. Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, U.S. Salinity Lab. and Dept. Soil and Envir. Sci., Riverside, CA, pp923-930(1999)
  •  
  • 20. Lin, H.S., McInnes, KJ., Wilding, L.P., and Hallmark, C.T. 'Development of hydraulic pedotransfer functions from soil morphological features' , Proc. Int. Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, U.S. Salinity Lab. and Dept. Soil and Envir. Sci., Riverside, CA, pp967-979(1999)
  •  
  • 21. Zeiliguer, AM. 'Estimating soil water retention with several soil models', Proc. Int. Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, U.S. Salinity Lab. and Dept. Soil and Envir. Sci., Riverside, CA., pp1211-1223(1999)
  •  

This Article

  • 2002; 7(3): 103-114

    Published on Sep 1, 2002