• Shifts in Biochemical Environments and Subsequent Degradation of Explosive Compounds (TNT and RDX) by Starch Ball Addition in the Benthic Zone of Bench Scale Settling Basins
  • Park, Jieun;Bae, Bumhan;
  • Department of Civil & Environmental Engineering, Gachon University;Department of Civil & Environmental Engineering, Gachon University;
  • 전분 환 투입에 의한 실험실 규모 침전지 저부에서의 생화학적 환경 변화와 화약물질(TNT 및 RDX) 분해
  • 박지은;배범한;
  • 가천대학교 토목환경공학과;가천대학교 토목환경공학과;
Abstract
A starch ball was devised to conveniently supply carbon source to indigenous microorganisms and to enhance biotransformation of explosive compounds(TNT and RDX) in the sediments of settling basins installed in military shooting ranges. To identify optimum dose/sediment ratio for degradation of explosives in the basin, a series of bench scale settling basin experiments were performed for 30 days while monitoring supernatant pH, DO, concentrations of nitrite, nitrate, sulfate, explosive compounds, and acute toxicity measured by bacterial luminescence. Addition of starch ball induced changes in oxidation conditions from oxic to anoxic in the benthic zone of the basin, which resulted in subsequent reductive degradation of both TNT and RDX in the liquid and solid phase of basin. However, fermentation products of excess starch, acetic acid and formic acid, caused acute toxicity in the liquid phase. The optimum ratio of starch ball/sediment for explosive compounds degradation by inducing changes in bio-geochemical environments without increase in acute toxicity, was found to be 0.009~0.017.

Keywords: Biodegradation;Indigenous microorganisms;Starch ball;RDX;TNT;

References
  • 1. Adrian, N.R., Arnett, C.M., and Hickey, R.F., 2003, Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen, Wat. Res., 37, 3499-3507.
  •  
  • 2. Arnett, C.M. and Adran, N.R., 2009, Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions, Biodegradation, 20, 15-26.
  •  
  • 3. American Public Health Association, 1995, Standard Methods, 19th ed.
  •  
  • 4. ATSDR (Agency for Toxic Substances and Disease Registry), 2011, http://www.atsdr.cdc.gov/spl/
  •  
  • 5. Bae, B. and Park, J., 2014, Distribution and migration characteristics of explosive compounds in soil at military shooting ranges in Gyeonggi province, J. Kor. Geo-Environ. Soc., 15(6), 17-29.
  •  
  • 6. Beller, H.R., 2002, Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor, Wat. Res., 36, 2533-2540.
  •  
  • 7. Berner, R.A., 1981, A new geochemical classification of sedimentary environments, J.of Sedi. Petro., 51, 359-365.
  •  
  • 8. Binks, P.R., Nicklin, S., and Bruce, N.C., 1995, Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1, Appl. Environ. Microbiol., 61, 1318-1322.
  •  
  • 9. Boopathy, R., 1994, Transformation of nitroaromatic compounds by methanogenic bacterium Methanococcus sp. (strain B), Arch. Microbiol., 162, 131-137.
  •  
  • 10. Boopathy, R., 2000, Bioremediation of explosives contaminated soil, Int. Biodeter. Biodegr., 46, 29-36.
  •  
  • 11. Boopathy, R. and Kulpa, C.F., 1993, Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (strain B), Can. J. Microbiol., 42, 1203-1208.
  •  
  • 12. Boopathy, R., Gurgas, M., Ullian, J., and Manning, J.F., 1998, Metabolism of explosive compounds by sulfate-reducing bacteria, Current Microbiology, 37(2), 127-131.
  •  
  • 13. Bradley, P.M. and Chapelle, F.H., 1995, Factors affecting microbial 2,4,6-mineralization in contaminates soil, Environ. Sci. Technol., 29(3), 802-806.
  •  
  • 14. Bruns-Nagel, D., Breitung, J., von Low, E., Steinbach, K., Gorontzy, T., Kahl, M., Blotevogel, K.-H., and Gemsa, D., 1996, Microbial transformation of 2,4,6-Trinitrotoluene in aerobic soil columns, Appl. Environ. Microbiol., 62, 2651-2656.
  •  
  • 15. Bruns-Nagel, D., Scherrer, S., Casper, B., Garn, H., Drzyzge, O., von Low, E., and Gemsa, D., 1999, Effect of 2,4,6-trinitrotoluene and its metabolites on human monocytes, Environ. Sci. Technol., 33, 2566-2570.
  •  
  • 16. Coleman, N.V., Nelson, D.R., and Duxbury T., 1998, Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22, Soil. Biol. Biochem, 30, 1159-1167.
  •  
  • 17. Davis, L., Wani, A.H., OiNeal, B.R., and Hansen, L.D., 2004, RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater, J. Hazard. Mater., B112, 45-54.
  •  
  • 18. Freedman, D.L. and Sutherland, K.W., 1998, Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitratereducing conditions, Water Sci. Technol., 38(7), 33-40.
  •  
  • 19. Funk S.B., Roberts, D.J., Crawford, D.L., and Crawford, R.L., 1993, Initial phase optimization for bioremediation of munition compound contaminated soils, Appl. Environ. Microbiol., 59, 2171-2177.
  •  
  • 20. Han, G.B. and Clarkson, W.W., 1996, Removal of TNT and biotransformation products under sequential anaerobic/denitrifying conditions, Enviorn. Eng. Res., 1(1), 73-79.
  •  
  • 21. Lewis, T.A., Goszczynski, Crawford, R.L., Korus, R.A., and Admassu, W., 1996, Products of anaerobic 2,4,6-trinitrotoluene( TNT) transformation by Clostridium bifermentans, Appl. Environ. Microbiol., 62, 4669-4674.
  •  
  • 22. Livemore, J.A., Jin, Y.O., Arnseth, R.W., LePuil, M., and Mattes, T.E., 2013, Microbial community dynamics during acetate biostimulation of RDX-contaminated groundwater, Environ. Sci. Technol., 47, 7672-7678.
  •  
  • 23. Hawari, J., Beaudet, S., Halasz, A., Thiboutot, S., and Ampleman, G., 2000, Microbial degrdation of explosives: biotransformation versus mineralization, Appl. Microbiol. Biotechnol., 54, 605-618.
  •  
  • 24. Manning, J.F., Boopathy, R., and Kulpa, C.F., 1994, A Laboratory Study in Support of the Pilot Demonstration of a Biological Soil Slurry Reactor, Argonne National Laboratory, SFIM-AECTS- CR-9408.
  •  
  • 25. McCormick, N.G., Feeherry, F.E., and Levinson, H.S., 1976, Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds, Appl. Environ. Microbiol., 31, 949-958.
  •  
  • 26. McCormick, N.G., Cornell, J.H., and Kaplan. A.M., 1981, Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine, Appl. Environ. Microbiol., 42, 817-823.
  •  
  • 27. Ministry of Defense, 2002, Remedial Investigation and Counter Measure for Contaminants Spread in the Military Shooting Range.
  •  
  • 28. Muter, O., Potapova, K., Limane, B., Sproge, K., Jakobsone, I., Cepurnieks, G., and Bartkevics, V., 2012, The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil, J. Environ. Manage., 98, 51-55.
  •  
  • 29. Pallazo, A.J. and Leggett D.C., 1986, Effect and Disposition of TNT in a terrestrial plant, J. Environ. Qual., 15, 49-52.
  •  
  • 30. Park, S.H., Bae, B., Kim, M., and Jang, Y.Y., 2008, Distribution and behavior of mixed contaminants, explosives and heavy metals, at a small scale military shooting range, J. KSWQ, 24(5), 523-532.
  •  
  • 31. Peters, G.T., Burton, D.T., Paulson, R.L., and Turley, S.D., 2009, The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) to three freshwater invertebrates, Environ. Tox. Chem., 10(8), 1073-1081.
  •  
  • 32. Schackmann, A. and Muller, R., 1991, Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions, Appl. Microbiol. Biotechnol., 34, 809-813.
  •  
  • 33. Sherburne, L.A., Shrout, J.D., and Alvarez, P.J.J., 2005, Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum, Biodegradation, 16, 539-547.
  •  
  • 34. Singh, R., Soni, P., Kumar, P., Purohit, S., and Singh, A., 2009, Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria, World J., Microbiol. Biotechnol., 25, 269-275.
  •  
  • 35. Talmage, S.S., Opresko, D.M., Maxwell, C.J., Welsh, C.J.E., Cretella, F.M., Reno, P.H., and Daniel, B.F., 1999, Nitroaromatic munition mompounds: environmental effects and screening values, Rev. Environ. Contam. Toxicol., 161, 1-156.
  •  
  • 36. US EPA, 2007, Test Methods for Evaluating Solid Waste, Physical/ Chemical Methods, SW-846.
  •  
  • 37. US EPA, 2012, 2012 Edition of the drinking water standards and health advisories, EPA 822-R-09-011. Office of Water, Washington, DC, USA, 6-7.
  •  
  • 38. Zhao, J.-S., Greer, C.W., Thiboutot, S., Ampleman, G., and Hawari, J., 2004, Biodegradation of the nitramine explosives hexahydro-1,3,5- trinitro-1,3,5-triazine and octahydro-1,3,5,7- tetranitro-1,3,5,7- tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions, Can. J. Microbiol., 50, 91-96.
  •  

This Article

  • 2014; 19(3): 82-93

    Published on Jun 30, 2014

  • 10.7857/JSGE.2014.19.3.082
  • Received on Mar 26, 2014
  • Revised on Apr 22, 2014
  • Accepted on Apr 25, 2014