• Injectable Apatite for the Sequestration of Sr-90 in Groundwater
  • Jeen, Sung-Wook;Hyun, Yunjung;
  • Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Chonbuk National University;Korea Environment Institute;
Abstract
Laboratory column experiments were conducted to evaluate the feasibility of injectable apatite method for the sequestration of Sr-90 in groundwater. The columns were tested to evaluate the rate of citrate biodegradation, the amounts of apatite formed, and the treatability of strontium by the sediment and apatite. The results showed the decreases in citrate, calcium, and phosphate concentrations and the increases in alkalinity and citrate degradation products (acetate and formate) in the columns, suggesting that the citrate degradation and formation of calcium phosphate are occurring. Although the calcium and phosphate were not completely consumed within the columns, some amounts of apatite were formed and it showed an ability to treat strontium in groundwater. This study provides a fundamental understanding of reaction mechanisms for the injectable apatite sequestration method for Sr-90 removal.

Keywords: Apatite;Column experiment;Groundwater;Sequestration;Strontium-90;

References
  • 1. Chang, H.-S., Um, W., Rod, K., Serne, R.J., Thompson, A., Perdrial, N., Steefel, C.I., and Chorover, J., 2011, Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments. Environ. Sci. Technol., 45, 8313-8320.
  •  
  • 2. Fritz, B.G., Vermeul, V.R., Fruchter, J.S., Szecsody, J.E., and Williams, M.D., 2011, 100-NR-2 Apatite Treatability Test: An Update on Barrier Performance. PNNL-20252. Pacific Northwest National Laboratory, Richland, Washington, May 2011.
  •  
  • 3. Hughes, J.M., Cameron, M., and Crowley, K.D., 1989, Structural variations in natural F, OH and Cl apatites. Am. Mineral., 74, 870-876.
  •  
  • 4. Killey, R.W.D. and Munch, J.H., 1987, Radiostrontium migration from a 1953-54 liquid release to a sand aquifer. Water Poll. Res. J. Canada, 22, 107-128.
  •  
  • 5. Mehlich, A., 1938, Use of triethanolamine acetate-barium hydroxide buffer for the determination of some base exchange properties and lime requirement of soil. Soil Sci. Soc. Am. Proc. 29, 374-378.
  •  
  • 6. Moore, R.C., Sanchez, C., Holt, K., Zhang, P., Xu, H., and Choppin, G.R., 2004, Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration. Radiochimica Acta, 92, 719-723.
  •  
  • 7. Rabideau, A.J., Benschoten, J.V., Patel, A., and Bandilla, K., 2005, Performance assessment of a zeolite treatment wall for removing Sr-90 from groundwater. J. Contam. Hydrol., 79, 1-24.
  •  
  • 8. Seneca, S.M. and Rabideau, A.J., 2013, Natural zeolite permeable treatment wall for removing Sr-90 from groundwater. Environ. Sci. Technol., 47, 1550-1556.
  •  
  • 9. Spence, R.D. and Shi, C., 2005, Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes. Boca Raton, Florida, CRC Press.
  •  
  • 10. Szecsody, J.E., Burns, C.A., Moore, R.C., Fruchter, J.S., Vermeul, V.R., Williams, M.D., Girvin, D.C., McKinley, J.P., Truex, M.J., and Phillips, J.L., 2007, Hanford 100-N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100-N Sediments. PNNL-16891. Pacific Northwest National Laboratory, Richland, Washington, September 2007.
  •  
  • 11. Szecsody, J.E., Vermeul, V.R., Fruchter, J.S., Williams, M.D., Rockhold, M.L., Qafoku, N.P., and Phillips, J.L., 2010, Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis. PNNL-19524. Pacific Northwest National Laboratory, Richland, Washington, July 2010.
  •  
  • 12. Thompson, K.M., Fabre, R.J., Szecsody, J., Vermeul, V., Fellows, R., Williams, M., and Fruchter, J., 2009, An Innovative Approach for Constructing an In Situ Barrier for Strontium-90 at the Hanford Site, Washington. Waste Management 2009, Phoenix, Arizona.
  •  
  • 13. Vermeul, V.R., Szecsody, J.E., Fritz, B.G., Williams, M.D., Moore, R.C., and Fruchter, J.S., 2014, An injectable apatite permeable reactive barrier for in situ 90Sr immobilization. Ground Water Monit. R., 34(2), 28-41.
  •  
  • 14. Verbeeck, R.M.H., Hauben, M., Thun, H.P., and Verbeeck, F., 1977, Solubility and solution behavior of strontium hydroxyapatite. Z. Phys. Chem. (Wiesbaden), 108(2), 203-215.
  •  
  • 15. Williams, M.D., Fritz, B.G., Mendoza, D.P., Rockhold, M.L., Thorne, P.D., Xie, Y., Bjornstad, B.N., Mackley, R.D., Newcomer, D.R., Szecsody, J.E., and Vermeul, V.R., 2008, Interim Report: 100-NR-2 Apatite Treatability Test: Low-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization. PNNL-17429, Pacific Northwest National Laboratory, Richland, Washington, July 20008.
  •  
  • 16. Yin, J., Jeen, S.-W., Lee, D.R., and Mayer, K.U., 2014, Reactive transport modeling of 90Sr sorption in reactive sandpacks. J. Hazard. Mater., 280, 685-695.
  •  

This Article

  • 2015; 20(2): 32-40

    Published on Apr 30, 2015

  • 10.7857/JSGE.2015.20.2.032
  • Received on Mar 27, 2015
  • Revised on Apr 17, 2015
  • Accepted on Apr 20, 2015