• Investigation of Synthesis and Antibacterial Properties of a Magnetically Reusable Fe3O4-ACCS-Ag Nanocomposite
  • Shim, Jaehong;Kim, Hea-Won;Kim, Jin-Won;Seo, Young-Seok;Oh, Sae-Gang;Cho, Min;Park, Junghee;Oh, Byung-Taek;
  • School of Natural Resources, University of Nebraska-Lincoln;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Mine Reclamation Corp.;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;Division of Biotechnology, Collage of Environmental and Bioresource Science, Chonbuk National University;
  • 재사용이 가능한 나노복합재료 Fe3O4-ACCS-Ag의 제조 및 항균 특성 평가
  • 심재홍;김해원;김진원;서영석;오세강;조민;박정희;오병택;
  • 네브라스카 주립대학 천연자원학부;전북대학교 생명공학부;전북대학교 생명공학부;전북대학교 생명공학부;한국광해관리공단;전북대학교 생명공학부;전북대학교 생명공학부;전북대학교 생명공학부;
Abstract
In this study, Fe3O4-ACCS-Ag nanoparticles (NPs) were successfully synthesized using silica extracted from corn cob ash. The synthesized Fe3O4-ACCS-Ag NPs were characterized using X-ray diffraction (XRD), scanning electron microscopyenergy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). In addition, the potential application of Fe3O4-ACCS-Ag NPs as an antibacterial material in water disinfection was investigated using Escherichia coli ATCC 8739 as model bacteria. The antibacterial activity of synthesized composite material showed 99.9% antibacterial effect within 20 min for the tested bacteria. From this experiment, the synthesized Fe3O4-ACCS-Ag nanocomposites also hold magnetic properties and could be easily recovered from the water solution for its reuse. The reused nanocomposites presented the decreasing antibacterial efficiencies with the reuse cycle but the composite used three times still killed 90% of bacteria in 20 min.

Keywords: $Fe_3O_4$-ACCS-Ag nanoparticle;Antibacterial activity;Escherichia coli;Magnetic;

References
  • 1. Akhavan, O., 2009, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Coll. Interf. Sci., 336(1), 117-124.
  •  
  • 2. Amarjargal, A., Tijing, L.D., Im, I.T., and Kim, C.S., 2013, Simultaneous preparation of Ag/Fe3O4 core-shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties, Chem. Eng. J., 226, 243-254.
  •  
  • 3. Chang, Q., He, H., and Ma, Z., 2008, Efficient disinfection of Escherichia coli in water by silver loaded alumina, J. Inorg. Biochem., 102(9), 1736-1742.
  •  
  • 4. Chamakura, K., Perez-Ballestero, R., Luo, Z., Bashir, S., and Liu, J., 2011, Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants, Coll. Surf. B: Biointer., 84(1), 88-96.
  •  
  • 5. Cho, M., Chung, H.M., Choi, W.Y., and Yoon, J.Y., 2004, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Wat. Res., 38, 1069-1077.
  •  
  • 6. Deng, Y.H., Wang, C.C., Hu, J.H., Yang, W.L., and Fu, S.K., 2005, Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach, Coll. Surf. A: Physicochem, Eng. Asp., 262(1), 87-93.
  •  
  • 7. Fan, Z., Senapati, D., Khan, S.A., Singh, A.K., Hamme, A., Yust, B., Sardar, D., and Ray, P.C., 2013, Popcorn-Shaped Magnetic Core-Plasmonic Shell Multifunctional Nanoparticles for the Targeted Magnetic Separation and Enrichment, Label-Free SERS Imaging, and Photothermal Destruction of Multidrug-Resistant Bacteria, Chem. Eur. J., 19(8), 2839-2847.
  •  
  • 8. He, D., Ikeda-Ohno, A., Boland, D.D., and Waite, T.D., 2013, Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash, Environ. Sci. Technol., 47(10), 5276-5284.
  •  
  • 9. Jeon, H.J., Yi, S.C., and Oh, S.G., 2003, Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method, Biomaterials, 24(27), 4921-4928.
  •  
  • 10. Jin, X., Li, M., Wang, J., Marambio-Jones, C., Peng, F., Huang, X., and Hoek, E.M., 2010, High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions, Environ. Sci. Tech., 44(19), 7321-7328.
  •  
  • 11. Kalapathy, U., Proctor, A., and Shultz, J., 2000, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73(3), 257-262.
  •  
  • 12. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., and Lee, D.S., 2011, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Kor. J. Microbiol. Biotechnol., 39(1), 77-85.
  •  
  • 13. Landeen, L.K., Yahya, M.T., and Gerba, C.P., 1989, Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila, Appl. Environ. Microbial., 55(12), 3045-3050.
  •  
  • 14. Liria, C.W., Ungaro, V.A., Fernandes, R.M., Costa, N.J., Marana, S.R., Rossi, L.M., and Machini, M.T., 2014, Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst, J. Nanopart. Res., 16(11), 1-13.
  •  
  • 15. Liu, J., Lee, J.B., Kim, D.H., and Kim, Y., 2007, Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol, Coll. Surf. A: Physicochem, Eng. Asp., 302(1), 276-279.
  •  
  • 16. Mpenyana-Monyatsi, L., Mthombeni, N.H., Onyango, M.S., and Momba, M.N., 2012, Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater, Int. J. Environ. Res. Pub. He., 9(1), 244-271.
  •  
  • 17. Naik, B., Desai, V., Kowshik, M., Prasad, V.S., Fernando, G.F., and Ghosh, N.N., 2011, Synthesis of Ag/AgCl-mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli, Particuology, 9(3), 243-247.
  •  
  • 18. Quang, D.V., Sarawade, P.B., Hilonga, A., Kim, J.K., Chai, Y.G., Kim, S.H., Ryu, J.Y., and Kim, H.T., 2011, Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties, Coll. Surf. A: Physicochem. Eng. Asp., 389(1), 118-126.
  •  
  • 19. Rai, M.K., Deshmukh, S.D., Ingle, A.P., and Gade, A.K., 2012, Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria, J. Appl. Microbiol., 112(5), 841-852.
  •  
  • 20. Sanpui, P., Murugadoss, A., Prasad, P.D., Ghosh, S.S., and Chattopadhyay, A., 2008, The antibacterial properties of a novel chitosan-Ag-nanoparticle composite, Int. J. Food Microbial., 124(2), 142-146.
  •  
  • 21. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash, D., 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18(22), 1-9.
  •  
  • 22. Wang, J.X., Wen, L.X., Wang, Z.H., and Chen, J.F., 2006, Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects, Mater. Chem. Pphysic., 96(1), 90-97.
  •  
  • 23. Wu, C.S. and Liao, H.T., 2011, Antibacterial activity and antistatic composites of polyester/Ag-SiO2 prepared by a sol-gel method, J. Appl. Polym. Sci., 121(4), 2193-2201.
  •  
  • 24. Yanagisawa, N., Fujimoto, K., Nakashima, S., Kurata, Y., and Sanada, N., 1997, Micro FT-IR study of the hydration-layer during dissolution of silica glass, Geochim. Cosmochim. Acta, 61(6), 1165-1170.
  •  
  • 25. Yoon, K.Y., Hoon Byeon, J., Park, J.H., and Hwang, J., 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373(2), 572-575.
  •  
  • 26. Zhang, L., Yu, J.C., Yip, H.Y., Li, Q., Kwong, K.W., Xu, A.W., and Wong, P.K., 2003, Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities, Langmuir, 19(24), 10372-10380.
  •  
  • 27. Zhang, W., Yao, Y., Sullivan, N., and Chen, Y., 2011a, Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics, Environ. Sci. Technol., 45(10), 4422-4428.
  •  
  • 28. Zhang, X., Niu, H., Yan, J., and Cai, Y., 2011b, Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity, Coll. Surf. A: Physicochem. Eng. Asp., 375(1), 186-192.
  •  

This Article

  • 2015; 20(3): 25-33

    Published on Jun 30, 2015

  • 10.7857/JSGE.2015.20.3.025
  • Received on Dec 29, 2014
  • Revised on Mar 27, 2015
  • Accepted on Apr 15, 2015