• A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization
  • Jeong, Jina;Park, Eungyu;
  • Department of Geology, Kyungpook National University;Department of Geology, Kyungpook National University;
  • 지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발
  • 정진아;박은규;
  • 경북대학교 지질학과;경북대학교 지질학과;
Abstract
In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.

Keywords: Bayesian inversion;History matching;Subsurface characterization;Markov chain Monte Carlo;

References
  • 1. Bertino, L., Evensen, G., and Wackernagel, H., 2002, Combinin geostatistics and Kalman filtering for data assimilation in an estuarine system, Institute of Physics Publishing, 18, 1-23.
  •  
  • 2. Cardiff, M. and Kitanidis, P.K., 2009, Bayesian inversion for facies detection: an extensible level set framework, Water Resour. Res., 45(10), W10416, doi:10.1029/2008WR007675.
  •  
  • 3. Chen, Y. and Zhang, D., 2006, Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Adv. Water Resour., 29, 1107-1122.
  •  
  • 4. Chen, Y., Oliver, D.S., and Zhang, D., 2009, Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization, J. Pet. Sci. Eng., 66, 1-14.
  •  
  • 5. Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical Software Library and User’s Guide, 2nd edition, Oxford University Press., New York, 369p.
  •  
  • 6. Deutsch, C.V. and Tran, T.T., 2002, FLUVSIM:a program for object-based stochastic modeling of fluvial depositional systems, Comput. Geosci., 28, 525-535.
  •  
  • 7. Efendiev, Y., Datta-Gupta, A., Ma, X., and Mallick, B., 2009, Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques, Water Resour. Res., 45(11), W11414, doi:10.1029/2008WR007039.
  •  
  • 8. Ezzedine, S., Rubin, Y., and Chen, J., 1999, Bayesian method for hydrogeological site characterization using borehole and geophysical survey data: Theory and application to the Lawrence Livermore National Laboratory Superfund site, c, 35(9), 2671-2683.
  •  
  • 9. Fu, J. and Gomez-Hernanez, J.J., 2009, A blocking Markov chain monte carlo method for inverse stochastic hydrogeological modeling, Math. Geosci., 41, 105-128.
  •  
  • 10. He, Z., Yoon, S., and Datta-Gupta, A., 2002, Streamline-based production data integration with gravity and changing field conditions, SPE J., 7(4), 423-436, doi:10.2118/81208-PA.
  •  
  • 11. Hill, M.C., Harbaugh, A.W., Banta, E.R., McDonald, M.G., MODFLOW-2000, 2000, The U.S. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process, U.S. Geological Survey, Reston, Virginia, 113p.
  •  
  • 12. Hu, L.Y. and Chugunova, T., 2008, Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review, Water Resour. Res., 44(11), W11413.
  •  
  • 13. Hyndman, D.W., Harris, J.M., and Gorelick, S.M., 1994, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30(7), 1965-1977.
  •  
  • 14. Jeong, J., Park, E., Han, W.S., and Kim, K.-Y., 2014, A novel data assimilation methodology for predicting lithology based on sequence labeling algorithms, J. Geophys. Res. Solid Earth, 119, 7503-7520.
  •  
  • 15. Kitanidis, P.K., 1995, Quasi-linear geostatistical theory for inversing, Water Resour. Res., 31(10), 2411-2419.
  •  
  • 16. Kitanidis, P.K., 2015, Compressed state Kalman filter for large systems, Adv. Water Resour., 76, 120-126.
  •  
  • 17. Kretz, V., Ravalec-Dupin, M.L., and Roggero, F., 2004, An integrated reservoir characterization study matching production data and 4D seismic, SPE J., 7(2), 116-122, doi:10.2118/88033-PA.
  •  
  • 18. Mariethoz, G., Renard, P., Cornaton, F., and Jaquet, O., 2009, Truncated plurigaussian simulations to characterize aquifer heterogeneity, Ground Wate., 47(1), 13-24.
  •  
  • 19. Mariethoz, G., Renard, P., and Caers, J., 2010, Bayesian inverse problem and optimization with iterative spatial resampling, Water Resour. Res., 46, W11530, doi:10.1029/2010WR009274.
  •  
  • 20. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., 1953, Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1091.
  •  
  • 21. Murakami, H., Chen, X., Hahn, M.S., Liu, Y., Rockhold, M.L., Vermeul, V.R., Zachara, J.M., and Rubin, Y., 2010, Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area, Hydrol. Earth Syst. Sci., 14, 1989-2001, doi:10.5194/hess-14-1989-2010.
  •  
  • 22. Oliver, D.S., Cunha, L.B., and Reynolds, A.C., 1997, Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geosci., 29(1), 61-91.
  •  
  • 23. Pesti, G., Bogardi, I., Kelly, W.E., and Kalinski, R., 1993, Cokriging of geoelectric and well data to define aquifer properties, Ground wate., 31(6), 905-912, doi:10.111/j.1745-6584. 1993.tb00863.x.
  •  
  • 24. Reichle, R.H., McLaughlin, D.B., and Entekhabi, D., 2002, Hydrologic data assimilation with the ensemble Kalman filter, Am. Meteorol. Soc., 130, 103-114.
  •  
  • 25. Rubin, Y., Chen, X., Murakami, H., and Hahn, M., 2010, A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields, Water Resour. Res., 46(10), W10523, doi:10.1029/2009WR008799.
  •  
  • 26. Shin, Y., Jeong, H., and Choe, J., 2010, Reservoir characterization using an EnKF and a non-parametric approach for highly non-Gaussain permeability fields, Energy Sources, Part A: Recovery, Util. Environ. Effectes, 32(16), 1569-1578.
  •  
  • 27. Strebelle, S., 2000, Sequential simulation drawing structures from training images, Ph.D. thesis, Stanford University, USA, 187p.
  •  
  • 28. Strebelle, S., 2002, Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34(1), 1-22.
  •  
  • 29. Will, R., Archer, R., and Dershowitz, B., 2005, Integration of seismic anisotropy and reservoir-performance data for characterization of naturally fractured reservoirs using discrete-featurenetwork models, SPE J., 8(2), 132-142, doi:10.2118/84412-PA.
  •  
  • 30. Yoon, S., Malallah, A.H., Datta-Gupta, A., Vasco, D.W., and Behrens, R.A., 2001, A multiscale approach to production-data integration using streamline models, SPE J., 6(2), 182-192, doi:10.2118/71313-PA.
  •  
  • 31. Zhou, H., Gomez-Hernandez, J.J., Franssen, H.-J.H., and Li, L., 2011, An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering, Adv. Water Resour., 34, 844-864.
  •  
  • 32. Zhou, H., Li, L., Franssen, H.-J.H., and Gomez-Hernandez, J.J, 2012, Patter recognition in a bimodal aquifer using the normalsccore ensemble Kalman filter, Math. Geosci., 44, 169-185.
  •  

This Article

  • 2015; 20(3): 51-64

    Published on Jun 30, 2015

  • 10.7857/JSGE.2015.20.3.051
  • Received on Feb 24, 2015
  • Revised on Mar 28, 2015
  • Accepted on Mar 31, 2015